Extensions 1→N→G→Q→1 with N=C2 and Q=D101C8

Direct product G=N×Q with N=C2 and Q=D101C8
dρLabelID
C2×D101C8160C2xD10:1C8320,735


Non-split extensions G=N.Q with N=C2 and Q=D101C8
extensionφ:Q→Aut NdρLabelID
C2.1(D101C8) = D101C16central extension (φ=1)160C2.1(D10:1C8)320,65
C2.2(D101C8) = (C2×C40)⋊15C4central extension (φ=1)320C2.2(D10:1C8)320,108
C2.3(D101C8) = Dic103C8central stem extension (φ=1)320C2.3(D10:1C8)320,14
C2.4(D101C8) = D203C8central stem extension (φ=1)160C2.4(D10:1C8)320,17
C2.5(D101C8) = C53(C23⋊C8)central stem extension (φ=1)80C2.5(D10:1C8)320,26
C2.6(D101C8) = (C2×Dic5)⋊C8central stem extension (φ=1)160C2.6(D10:1C8)320,27
C2.7(D101C8) = D204C8central stem extension (φ=1)160C2.7(D10:1C8)320,41
C2.8(D101C8) = Dic104C8central stem extension (φ=1)320C2.8(D10:1C8)320,42
C2.9(D101C8) = D20.3C8central stem extension (φ=1)1602C2.9(D10:1C8)320,66
C2.10(D101C8) = C8.25D20central stem extension (φ=1)804C2.10(D10:1C8)320,72
C2.11(D101C8) = D20.4C8central stem extension (φ=1)1604C2.11(D10:1C8)320,73

׿
×
𝔽