Copied to
clipboard

G = D101C8order 160 = 25·5

1st semidirect product of D10 and C8 acting via C8/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D101C8, C4.19D20, C20.52D4, C10.8M4(2), (C2×C8)⋊1D5, (C2×C40)⋊1C2, C2.5(C8×D5), C53(C22⋊C8), C10.14(C2×C8), (C2×C4).93D10, C2.3(C8⋊D5), C4.27(C5⋊D4), (C2×Dic5).5C4, (C22×D5).3C4, C22.11(C4×D5), C2.1(D10⋊C4), C10.17(C22⋊C4), (C2×C20).107C22, (C2×C4×D5).7C2, (C2×C52C8)⋊9C2, (C2×C10).32(C2×C4), SmallGroup(160,27)

Series: Derived Chief Lower central Upper central

C1C10 — D101C8
C1C5C10C20C2×C20C2×C4×D5 — D101C8
C5C10 — D101C8
C1C2×C4C2×C8

Generators and relations for D101C8
 G = < a,b,c | a10=b2=c8=1, bab=a-1, ac=ca, cbc-1=a5b >

10C2
10C2
5C22
5C22
10C22
10C22
10C4
2D5
2D5
2C8
5C2×C4
5C23
10C8
10C2×C4
10C2×C4
2D10
2Dic5
2D10
5C2×C8
5C22×C4
2C52C8
2C40
2C4×D5
2C4×D5
5C22⋊C8

Smallest permutation representation of D101C8
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 29)(2 28)(3 27)(4 26)(5 25)(6 24)(7 23)(8 22)(9 21)(10 30)(11 79)(12 78)(13 77)(14 76)(15 75)(16 74)(17 73)(18 72)(19 71)(20 80)(31 48)(32 47)(33 46)(34 45)(35 44)(36 43)(37 42)(38 41)(39 50)(40 49)(51 63)(52 62)(53 61)(54 70)(55 69)(56 68)(57 67)(58 66)(59 65)(60 64)
(1 16 50 70 30 80 40 60)(2 17 41 61 21 71 31 51)(3 18 42 62 22 72 32 52)(4 19 43 63 23 73 33 53)(5 20 44 64 24 74 34 54)(6 11 45 65 25 75 35 55)(7 12 46 66 26 76 36 56)(8 13 47 67 27 77 37 57)(9 14 48 68 28 78 38 58)(10 15 49 69 29 79 39 59)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,29)(2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,21)(10,30)(11,79)(12,78)(13,77)(14,76)(15,75)(16,74)(17,73)(18,72)(19,71)(20,80)(31,48)(32,47)(33,46)(34,45)(35,44)(36,43)(37,42)(38,41)(39,50)(40,49)(51,63)(52,62)(53,61)(54,70)(55,69)(56,68)(57,67)(58,66)(59,65)(60,64), (1,16,50,70,30,80,40,60)(2,17,41,61,21,71,31,51)(3,18,42,62,22,72,32,52)(4,19,43,63,23,73,33,53)(5,20,44,64,24,74,34,54)(6,11,45,65,25,75,35,55)(7,12,46,66,26,76,36,56)(8,13,47,67,27,77,37,57)(9,14,48,68,28,78,38,58)(10,15,49,69,29,79,39,59)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,29)(2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,21)(10,30)(11,79)(12,78)(13,77)(14,76)(15,75)(16,74)(17,73)(18,72)(19,71)(20,80)(31,48)(32,47)(33,46)(34,45)(35,44)(36,43)(37,42)(38,41)(39,50)(40,49)(51,63)(52,62)(53,61)(54,70)(55,69)(56,68)(57,67)(58,66)(59,65)(60,64), (1,16,50,70,30,80,40,60)(2,17,41,61,21,71,31,51)(3,18,42,62,22,72,32,52)(4,19,43,63,23,73,33,53)(5,20,44,64,24,74,34,54)(6,11,45,65,25,75,35,55)(7,12,46,66,26,76,36,56)(8,13,47,67,27,77,37,57)(9,14,48,68,28,78,38,58)(10,15,49,69,29,79,39,59) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,29),(2,28),(3,27),(4,26),(5,25),(6,24),(7,23),(8,22),(9,21),(10,30),(11,79),(12,78),(13,77),(14,76),(15,75),(16,74),(17,73),(18,72),(19,71),(20,80),(31,48),(32,47),(33,46),(34,45),(35,44),(36,43),(37,42),(38,41),(39,50),(40,49),(51,63),(52,62),(53,61),(54,70),(55,69),(56,68),(57,67),(58,66),(59,65),(60,64)], [(1,16,50,70,30,80,40,60),(2,17,41,61,21,71,31,51),(3,18,42,62,22,72,32,52),(4,19,43,63,23,73,33,53),(5,20,44,64,24,74,34,54),(6,11,45,65,25,75,35,55),(7,12,46,66,26,76,36,56),(8,13,47,67,27,77,37,57),(9,14,48,68,28,78,38,58),(10,15,49,69,29,79,39,59)]])

D101C8 is a maximal subgroup of
C42.282D10  C8×D20  C86D20  C42.243D10  C42.182D10  C89D20  C42.185D10  D5×C22⋊C8  C55(C8×D4)  D107M4(2)  C22⋊C8⋊D5  D104M4(2)  Dic52M4(2)  C52C826D4  D4⋊D20  D10.12D8  D20.8D4  D10.16SD16  C406C4⋊C2  D43D20  D4.D20  C405C4⋊C2  D10.11SD16  Q82D20  D104Q16  D10.7Q16  Q8.D20  D204D4  (C2×C8).D10  D101C8.C2  C42.200D10  D205C8  C42.202D10  D105M4(2)  C206M4(2)  C42.31D10  D10.12SD16  D10.17SD16  C4.Q8⋊D5  C20.(C4○D4)  D10.13D8  D10.8Q16  C2.D8⋊D5  C2.D87D5  C8×C5⋊D4  (C22×C8)⋊D5  C4032D4  D108M4(2)  C40⋊D4  C4018D4  C4.89(C2×D20)  D20⋊D4  Dic10⋊D4  D106SD16  D108SD16  D207D4  Dic10.16D4  D105Q16  D20.17D4  C60.93D4  D304C8  D303C8
D101C8 is a maximal quotient of
Dic103C8  D203C8  C53(C23⋊C8)  (C2×Dic5)⋊C8  D204C8  Dic104C8  D101C16  D20.3C8  C8.25D20  D20.4C8  (C2×C40)⋊15C4  C60.93D4  D304C8  D303C8

52 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F5A5B8A8B8C8D8E8F8G8H10A···10F20A···20H40A···40P
order122222444444558888888810···1020···2040···40
size1111101011111010222222101010102···22···22···2

52 irreducible representations

dim1111111222222222
type++++++++
imageC1C2C2C2C4C4C8D4D5M4(2)D10D20C5⋊D4C4×D5C8×D5C8⋊D5
kernelD101C8C2×C52C8C2×C40C2×C4×D5C2×Dic5C22×D5D10C20C2×C8C10C2×C4C4C4C22C2C2
# reps1111228222244488

Matrix representation of D101C8 in GL3(𝔽41) generated by

100
007
0357
,
100
0347
0407
,
1400
0177
03524
G:=sub<GL(3,GF(41))| [1,0,0,0,0,35,0,7,7],[1,0,0,0,34,40,0,7,7],[14,0,0,0,17,35,0,7,24] >;

D101C8 in GAP, Magma, Sage, TeX

D_{10}\rtimes_1C_8
% in TeX

G:=Group("D10:1C8");
// GroupNames label

G:=SmallGroup(160,27);
// by ID

G=gap.SmallGroup(160,27);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,121,31,86,4613]);
// Polycyclic

G:=Group<a,b,c|a^10=b^2=c^8=1,b*a*b=a^-1,a*c=c*a,c*b*c^-1=a^5*b>;
// generators/relations

Export

Subgroup lattice of D101C8 in TeX

׿
×
𝔽