direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×D10⋊1C8, D10⋊8(C2×C8), (C2×C8)⋊31D10, (C22×C8)⋊1D5, (C22×C40)⋊1C2, C4.85(C2×D20), (C22×D5)⋊4C8, C10⋊3(C22⋊C8), (C2×C40)⋊40C22, C20.434(C2×D4), (C2×C4).171D20, (C2×C20).498D4, (C23×D5).9C4, C22.17(C8×D5), C23.63(C4×D5), C10.43(C22×C8), (C2×C20).858C23, (C22×C4).463D10, C10.46(C2×M4(2)), (C2×C10).31M4(2), C4.54(D10⋊C4), C20.112(C22⋊C4), C22.11(C8⋊D5), (C22×Dic5).19C4, (C22×C20).559C22, C22.48(D10⋊C4), C5⋊5(C2×C22⋊C8), C2.19(D5×C2×C8), (C2×C4×D5).25C4, C2.5(C2×C8⋊D5), C22.60(C2×C4×D5), (C2×C10).47(C2×C8), (C2×C4).184(C4×D5), C4.124(C2×C5⋊D4), (D5×C22×C4).20C2, (C2×C20).427(C2×C4), (C2×C5⋊2C8)⋊44C22, (C22×C5⋊2C8)⋊20C2, C2.2(C2×D10⋊C4), C10.91(C2×C22⋊C4), (C2×C4×D5).352C22, (C2×C4).276(C5⋊D4), (C2×C4).800(C22×D5), (C2×C10).229(C22×C4), (C22×C10).161(C2×C4), (C2×Dic5).154(C2×C4), (C22×D5).106(C2×C4), (C2×C10).125(C22⋊C4), SmallGroup(320,735)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×D10⋊1C8
G = < a,b,c,d | a2=b10=c2=d8=1, ab=ba, ac=ca, ad=da, cbc=b-1, bd=db, dcd-1=b5c >
Subgroups: 718 in 202 conjugacy classes, 87 normal (29 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, C23, C23, D5, C10, C10, C2×C8, C2×C8, C22×C4, C22×C4, C24, Dic5, C20, C20, D10, D10, C2×C10, C2×C10, C22⋊C8, C22×C8, C22×C8, C23×C4, C5⋊2C8, C40, C4×D5, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×D5, C22×D5, C22×C10, C2×C22⋊C8, C2×C5⋊2C8, C2×C5⋊2C8, C2×C40, C2×C40, C2×C4×D5, C2×C4×D5, C22×Dic5, C22×C20, C23×D5, D10⋊1C8, C22×C5⋊2C8, C22×C40, D5×C22×C4, C2×D10⋊1C8
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, C23, D5, C22⋊C4, C2×C8, M4(2), C22×C4, C2×D4, D10, C22⋊C8, C2×C22⋊C4, C22×C8, C2×M4(2), C4×D5, D20, C5⋊D4, C22×D5, C2×C22⋊C8, C8×D5, C8⋊D5, D10⋊C4, C2×C4×D5, C2×D20, C2×C5⋊D4, D10⋊1C8, D5×C2×C8, C2×C8⋊D5, C2×D10⋊C4, C2×D10⋊1C8
(1 95)(2 96)(3 97)(4 98)(5 99)(6 100)(7 91)(8 92)(9 93)(10 94)(11 90)(12 81)(13 82)(14 83)(15 84)(16 85)(17 86)(18 87)(19 88)(20 89)(21 106)(22 107)(23 108)(24 109)(25 110)(26 101)(27 102)(28 103)(29 104)(30 105)(31 116)(32 117)(33 118)(34 119)(35 120)(36 111)(37 112)(38 113)(39 114)(40 115)(41 126)(42 127)(43 128)(44 129)(45 130)(46 121)(47 122)(48 123)(49 124)(50 125)(51 136)(52 137)(53 138)(54 139)(55 140)(56 131)(57 132)(58 133)(59 134)(60 135)(61 146)(62 147)(63 148)(64 149)(65 150)(66 141)(67 142)(68 143)(69 144)(70 145)(71 156)(72 157)(73 158)(74 159)(75 160)(76 151)(77 152)(78 153)(79 154)(80 155)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 104)(2 103)(3 102)(4 101)(5 110)(6 109)(7 108)(8 107)(9 106)(10 105)(11 74)(12 73)(13 72)(14 71)(15 80)(16 79)(17 78)(18 77)(19 76)(20 75)(21 93)(22 92)(23 91)(24 100)(25 99)(26 98)(27 97)(28 96)(29 95)(30 94)(31 123)(32 122)(33 121)(34 130)(35 129)(36 128)(37 127)(38 126)(39 125)(40 124)(41 113)(42 112)(43 111)(44 120)(45 119)(46 118)(47 117)(48 116)(49 115)(50 114)(51 148)(52 147)(53 146)(54 145)(55 144)(56 143)(57 142)(58 141)(59 150)(60 149)(61 138)(62 137)(63 136)(64 135)(65 134)(66 133)(67 132)(68 131)(69 140)(70 139)(81 158)(82 157)(83 156)(84 155)(85 154)(86 153)(87 152)(88 151)(89 160)(90 159)
(1 11 45 145 25 160 40 140)(2 12 46 146 26 151 31 131)(3 13 47 147 27 152 32 132)(4 14 48 148 28 153 33 133)(5 15 49 149 29 154 34 134)(6 16 50 150 30 155 35 135)(7 17 41 141 21 156 36 136)(8 18 42 142 22 157 37 137)(9 19 43 143 23 158 38 138)(10 20 44 144 24 159 39 139)(51 91 86 126 66 106 71 111)(52 92 87 127 67 107 72 112)(53 93 88 128 68 108 73 113)(54 94 89 129 69 109 74 114)(55 95 90 130 70 110 75 115)(56 96 81 121 61 101 76 116)(57 97 82 122 62 102 77 117)(58 98 83 123 63 103 78 118)(59 99 84 124 64 104 79 119)(60 100 85 125 65 105 80 120)
G:=sub<Sym(160)| (1,95)(2,96)(3,97)(4,98)(5,99)(6,100)(7,91)(8,92)(9,93)(10,94)(11,90)(12,81)(13,82)(14,83)(15,84)(16,85)(17,86)(18,87)(19,88)(20,89)(21,106)(22,107)(23,108)(24,109)(25,110)(26,101)(27,102)(28,103)(29,104)(30,105)(31,116)(32,117)(33,118)(34,119)(35,120)(36,111)(37,112)(38,113)(39,114)(40,115)(41,126)(42,127)(43,128)(44,129)(45,130)(46,121)(47,122)(48,123)(49,124)(50,125)(51,136)(52,137)(53,138)(54,139)(55,140)(56,131)(57,132)(58,133)(59,134)(60,135)(61,146)(62,147)(63,148)(64,149)(65,150)(66,141)(67,142)(68,143)(69,144)(70,145)(71,156)(72,157)(73,158)(74,159)(75,160)(76,151)(77,152)(78,153)(79,154)(80,155), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,104)(2,103)(3,102)(4,101)(5,110)(6,109)(7,108)(8,107)(9,106)(10,105)(11,74)(12,73)(13,72)(14,71)(15,80)(16,79)(17,78)(18,77)(19,76)(20,75)(21,93)(22,92)(23,91)(24,100)(25,99)(26,98)(27,97)(28,96)(29,95)(30,94)(31,123)(32,122)(33,121)(34,130)(35,129)(36,128)(37,127)(38,126)(39,125)(40,124)(41,113)(42,112)(43,111)(44,120)(45,119)(46,118)(47,117)(48,116)(49,115)(50,114)(51,148)(52,147)(53,146)(54,145)(55,144)(56,143)(57,142)(58,141)(59,150)(60,149)(61,138)(62,137)(63,136)(64,135)(65,134)(66,133)(67,132)(68,131)(69,140)(70,139)(81,158)(82,157)(83,156)(84,155)(85,154)(86,153)(87,152)(88,151)(89,160)(90,159), (1,11,45,145,25,160,40,140)(2,12,46,146,26,151,31,131)(3,13,47,147,27,152,32,132)(4,14,48,148,28,153,33,133)(5,15,49,149,29,154,34,134)(6,16,50,150,30,155,35,135)(7,17,41,141,21,156,36,136)(8,18,42,142,22,157,37,137)(9,19,43,143,23,158,38,138)(10,20,44,144,24,159,39,139)(51,91,86,126,66,106,71,111)(52,92,87,127,67,107,72,112)(53,93,88,128,68,108,73,113)(54,94,89,129,69,109,74,114)(55,95,90,130,70,110,75,115)(56,96,81,121,61,101,76,116)(57,97,82,122,62,102,77,117)(58,98,83,123,63,103,78,118)(59,99,84,124,64,104,79,119)(60,100,85,125,65,105,80,120)>;
G:=Group( (1,95)(2,96)(3,97)(4,98)(5,99)(6,100)(7,91)(8,92)(9,93)(10,94)(11,90)(12,81)(13,82)(14,83)(15,84)(16,85)(17,86)(18,87)(19,88)(20,89)(21,106)(22,107)(23,108)(24,109)(25,110)(26,101)(27,102)(28,103)(29,104)(30,105)(31,116)(32,117)(33,118)(34,119)(35,120)(36,111)(37,112)(38,113)(39,114)(40,115)(41,126)(42,127)(43,128)(44,129)(45,130)(46,121)(47,122)(48,123)(49,124)(50,125)(51,136)(52,137)(53,138)(54,139)(55,140)(56,131)(57,132)(58,133)(59,134)(60,135)(61,146)(62,147)(63,148)(64,149)(65,150)(66,141)(67,142)(68,143)(69,144)(70,145)(71,156)(72,157)(73,158)(74,159)(75,160)(76,151)(77,152)(78,153)(79,154)(80,155), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,104)(2,103)(3,102)(4,101)(5,110)(6,109)(7,108)(8,107)(9,106)(10,105)(11,74)(12,73)(13,72)(14,71)(15,80)(16,79)(17,78)(18,77)(19,76)(20,75)(21,93)(22,92)(23,91)(24,100)(25,99)(26,98)(27,97)(28,96)(29,95)(30,94)(31,123)(32,122)(33,121)(34,130)(35,129)(36,128)(37,127)(38,126)(39,125)(40,124)(41,113)(42,112)(43,111)(44,120)(45,119)(46,118)(47,117)(48,116)(49,115)(50,114)(51,148)(52,147)(53,146)(54,145)(55,144)(56,143)(57,142)(58,141)(59,150)(60,149)(61,138)(62,137)(63,136)(64,135)(65,134)(66,133)(67,132)(68,131)(69,140)(70,139)(81,158)(82,157)(83,156)(84,155)(85,154)(86,153)(87,152)(88,151)(89,160)(90,159), (1,11,45,145,25,160,40,140)(2,12,46,146,26,151,31,131)(3,13,47,147,27,152,32,132)(4,14,48,148,28,153,33,133)(5,15,49,149,29,154,34,134)(6,16,50,150,30,155,35,135)(7,17,41,141,21,156,36,136)(8,18,42,142,22,157,37,137)(9,19,43,143,23,158,38,138)(10,20,44,144,24,159,39,139)(51,91,86,126,66,106,71,111)(52,92,87,127,67,107,72,112)(53,93,88,128,68,108,73,113)(54,94,89,129,69,109,74,114)(55,95,90,130,70,110,75,115)(56,96,81,121,61,101,76,116)(57,97,82,122,62,102,77,117)(58,98,83,123,63,103,78,118)(59,99,84,124,64,104,79,119)(60,100,85,125,65,105,80,120) );
G=PermutationGroup([[(1,95),(2,96),(3,97),(4,98),(5,99),(6,100),(7,91),(8,92),(9,93),(10,94),(11,90),(12,81),(13,82),(14,83),(15,84),(16,85),(17,86),(18,87),(19,88),(20,89),(21,106),(22,107),(23,108),(24,109),(25,110),(26,101),(27,102),(28,103),(29,104),(30,105),(31,116),(32,117),(33,118),(34,119),(35,120),(36,111),(37,112),(38,113),(39,114),(40,115),(41,126),(42,127),(43,128),(44,129),(45,130),(46,121),(47,122),(48,123),(49,124),(50,125),(51,136),(52,137),(53,138),(54,139),(55,140),(56,131),(57,132),(58,133),(59,134),(60,135),(61,146),(62,147),(63,148),(64,149),(65,150),(66,141),(67,142),(68,143),(69,144),(70,145),(71,156),(72,157),(73,158),(74,159),(75,160),(76,151),(77,152),(78,153),(79,154),(80,155)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,104),(2,103),(3,102),(4,101),(5,110),(6,109),(7,108),(8,107),(9,106),(10,105),(11,74),(12,73),(13,72),(14,71),(15,80),(16,79),(17,78),(18,77),(19,76),(20,75),(21,93),(22,92),(23,91),(24,100),(25,99),(26,98),(27,97),(28,96),(29,95),(30,94),(31,123),(32,122),(33,121),(34,130),(35,129),(36,128),(37,127),(38,126),(39,125),(40,124),(41,113),(42,112),(43,111),(44,120),(45,119),(46,118),(47,117),(48,116),(49,115),(50,114),(51,148),(52,147),(53,146),(54,145),(55,144),(56,143),(57,142),(58,141),(59,150),(60,149),(61,138),(62,137),(63,136),(64,135),(65,134),(66,133),(67,132),(68,131),(69,140),(70,139),(81,158),(82,157),(83,156),(84,155),(85,154),(86,153),(87,152),(88,151),(89,160),(90,159)], [(1,11,45,145,25,160,40,140),(2,12,46,146,26,151,31,131),(3,13,47,147,27,152,32,132),(4,14,48,148,28,153,33,133),(5,15,49,149,29,154,34,134),(6,16,50,150,30,155,35,135),(7,17,41,141,21,156,36,136),(8,18,42,142,22,157,37,137),(9,19,43,143,23,158,38,138),(10,20,44,144,24,159,39,139),(51,91,86,126,66,106,71,111),(52,92,87,127,67,107,72,112),(53,93,88,128,68,108,73,113),(54,94,89,129,69,109,74,114),(55,95,90,130,70,110,75,115),(56,96,81,121,61,101,76,116),(57,97,82,122,62,102,77,117),(58,98,83,123,63,103,78,118),(59,99,84,124,64,104,79,119),(60,100,85,125,65,105,80,120)]])
104 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | ··· | 4H | 4I | 4J | 4K | 4L | 5A | 5B | 8A | ··· | 8H | 8I | ··· | 8P | 10A | ··· | 10N | 20A | ··· | 20P | 40A | ··· | 40AF |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | ··· | 8 | 8 | ··· | 8 | 10 | ··· | 10 | 20 | ··· | 20 | 40 | ··· | 40 |
size | 1 | 1 | ··· | 1 | 10 | 10 | 10 | 10 | 1 | ··· | 1 | 10 | 10 | 10 | 10 | 2 | 2 | 2 | ··· | 2 | 10 | ··· | 10 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
104 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | ||||||||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C8 | D4 | D5 | M4(2) | D10 | D10 | C4×D5 | D20 | C5⋊D4 | C4×D5 | C8×D5 | C8⋊D5 |
kernel | C2×D10⋊1C8 | D10⋊1C8 | C22×C5⋊2C8 | C22×C40 | D5×C22×C4 | C2×C4×D5 | C22×Dic5 | C23×D5 | C22×D5 | C2×C20 | C22×C8 | C2×C10 | C2×C8 | C22×C4 | C2×C4 | C2×C4 | C2×C4 | C23 | C22 | C22 |
# reps | 1 | 4 | 1 | 1 | 1 | 4 | 2 | 2 | 16 | 4 | 2 | 4 | 4 | 2 | 4 | 8 | 8 | 4 | 16 | 16 |
Matrix representation of C2×D10⋊1C8 ►in GL5(𝔽41)
40 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 7 | 35 |
0 | 0 | 0 | 7 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 40 | 40 | 0 | 0 |
0 | 0 | 0 | 40 | 1 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 40 | 39 | 0 | 0 |
0 | 37 | 1 | 0 | 0 |
0 | 0 | 0 | 24 | 35 |
0 | 0 | 0 | 7 | 17 |
G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,7,7,0,0,0,35,0],[1,0,0,0,0,0,1,40,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,1,1],[1,0,0,0,0,0,40,37,0,0,0,39,1,0,0,0,0,0,24,7,0,0,0,35,17] >;
C2×D10⋊1C8 in GAP, Magma, Sage, TeX
C_2\times D_{10}\rtimes_1C_8
% in TeX
G:=Group("C2xD10:1C8");
// GroupNames label
G:=SmallGroup(320,735);
// by ID
G=gap.SmallGroup(320,735);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,422,58,136,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^10=c^2=d^8=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,b*d=d*b,d*c*d^-1=b^5*c>;
// generators/relations