# Extensions 1→N→G→Q→1 with N=D5×D8 and Q=C2

Direct product G=N×Q with N=D5×D8 and Q=C2
dρLabelID
C2×D5×D880C2xD5xD8320,1426

Semidirect products G=N:Q with N=D5×D8 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5×D8)⋊1C2 = D5×C8⋊C22φ: C2/C1C2 ⊆ Out D5×D8408+(D5xD8):1C2320,1444
(D5×D8)⋊2C2 = D85D10φ: C2/C1C2 ⊆ Out D5×D8808+(D5xD8):2C2320,1446
(D5×D8)⋊3C2 = D5×D16φ: C2/C1C2 ⊆ Out D5×D8804+(D5xD8):3C2320,537
(D5×D8)⋊4C2 = D16⋊D5φ: C2/C1C2 ⊆ Out D5×D8804(D5xD8):4C2320,538
(D5×D8)⋊5C2 = C16⋊D10φ: C2/C1C2 ⊆ Out D5×D8804+(D5xD8):5C2320,541
(D5×D8)⋊6C2 = D813D10φ: C2/C1C2 ⊆ Out D5×D8804(D5xD8):6C2320,1429
(D5×D8)⋊7C2 = D815D10φ: C2/C1C2 ⊆ Out D5×D8804+(D5xD8):7C2320,1441
(D5×D8)⋊8C2 = D5×C4○D8φ: trivial image804(D5xD8):8C2320,1439

Non-split extensions G=N.Q with N=D5×D8 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5×D8).1C2 = D5×SD32φ: C2/C1C2 ⊆ Out D5×D8804(D5xD8).1C2320,540
(D5×D8).2C2 = D40.C4φ: C2/C1C2 ⊆ Out D5×D8808+(D5xD8).2C2320,244
(D5×D8).3C2 = D40⋊C4φ: C2/C1C2 ⊆ Out D5×D8408+(D5xD8).3C2320,1069
(D5×D8).4C2 = D5.D16φ: C2/C1C2 ⊆ Out D5×D8808+(D5xD8).4C2320,242
(D5×D8).5C2 = D8×F5φ: C2/C1C2 ⊆ Out D5×D8408+(D5xD8).5C2320,1068

׿
×
𝔽