direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D5×D8, C8⋊4D10, D40⋊4C2, D4⋊1D10, C40⋊2C22, D10.23D4, D20⋊1C22, C20.1C23, Dic5.7D4, C5⋊2(C2×D8), D4⋊D5⋊1C2, (C5×D8)⋊2C2, (D4×D5)⋊1C2, (C8×D5)⋊1C2, C2.15(D4×D5), C5⋊2C8⋊5C22, C10.27(C2×D4), (C5×D4)⋊1C22, C4.1(C22×D5), (C4×D5).15C22, SmallGroup(160,131)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D5×D8
G = < a,b,c,d | a5=b2=c8=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 344 in 76 conjugacy classes, 29 normal (17 characteristic)
C1, C2, C2, C4, C4, C22, C5, C8, C8, C2×C4, D4, D4, C23, D5, D5, C10, C10, C2×C8, D8, D8, C2×D4, Dic5, C20, D10, D10, C2×C10, C2×D8, C5⋊2C8, C40, C4×D5, D20, C5⋊D4, C5×D4, C22×D5, C8×D5, D40, D4⋊D5, C5×D8, D4×D5, D5×D8
Quotients: C1, C2, C22, D4, C23, D5, D8, C2×D4, D10, C2×D8, C22×D5, D4×D5, D5×D8
Character table of D5×D8
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 5A | 5B | 8A | 8B | 8C | 8D | 10A | 10B | 10C | 10D | 10E | 10F | 20A | 20B | 40A | 40B | 40C | 40D | |
size | 1 | 1 | 4 | 4 | 5 | 5 | 20 | 20 | 2 | 10 | 2 | 2 | 2 | 2 | 10 | 10 | 2 | 2 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | -1+√5/2 | -1-√5/2 | -2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ12 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | -1-√5/2 | -1+√5/2 | -2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ13 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | -1+√5/2 | -1-√5/2 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D10 |
ρ14 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | -1-√5/2 | -1+√5/2 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ15 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | -1+√5/2 | -1-√5/2 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ16 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | -1-√5/2 | -1+√5/2 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D10 |
ρ17 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | -1+√5/2 | -1-√5/2 | -2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ18 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | -1-√5/2 | -1+√5/2 | -2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ19 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | -√2 | √2 | √2 | -√2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ20 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | √2 | -√2 | -√2 | √2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ21 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | √2 | -√2 | √2 | -√2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ22 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | -√2 | √2 | -√2 | √2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ23 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | -1+√5 | -1-√5 | 0 | 0 | 0 | 0 | -1-√5 | -1+√5 | 0 | 0 | 0 | 0 | 1+√5 | 1-√5 | 0 | 0 | 0 | 0 | orthogonal lifted from D4×D5 |
ρ24 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | -1-√5 | -1+√5 | 0 | 0 | 0 | 0 | -1+√5 | -1-√5 | 0 | 0 | 0 | 0 | 1-√5 | 1+√5 | 0 | 0 | 0 | 0 | orthogonal lifted from D4×D5 |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5 | -1-√5 | -2√2 | 2√2 | 0 | 0 | 1+√5 | 1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | ζ87ζ54+ζ87ζ5-ζ85ζ54-ζ85ζ5 | ζ83ζ53+ζ83ζ52-ζ8ζ53-ζ8ζ52 | ζ83ζ54+ζ83ζ5-ζ8ζ54-ζ8ζ5 | -ζ83ζ53-ζ83ζ52+ζ8ζ53+ζ8ζ52 | orthogonal faithful |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5 | -1+√5 | 2√2 | -2√2 | 0 | 0 | 1-√5 | 1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | ζ83ζ53+ζ83ζ52-ζ8ζ53-ζ8ζ52 | ζ87ζ54+ζ87ζ5-ζ85ζ54-ζ85ζ5 | -ζ83ζ53-ζ83ζ52+ζ8ζ53+ζ8ζ52 | ζ83ζ54+ζ83ζ5-ζ8ζ54-ζ8ζ5 | orthogonal faithful |
ρ27 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5 | -1+√5 | -2√2 | 2√2 | 0 | 0 | 1-√5 | 1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ83ζ53-ζ83ζ52+ζ8ζ53+ζ8ζ52 | ζ83ζ54+ζ83ζ5-ζ8ζ54-ζ8ζ5 | ζ83ζ53+ζ83ζ52-ζ8ζ53-ζ8ζ52 | ζ87ζ54+ζ87ζ5-ζ85ζ54-ζ85ζ5 | orthogonal faithful |
ρ28 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5 | -1-√5 | 2√2 | -2√2 | 0 | 0 | 1+√5 | 1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | ζ83ζ54+ζ83ζ5-ζ8ζ54-ζ8ζ5 | -ζ83ζ53-ζ83ζ52+ζ8ζ53+ζ8ζ52 | ζ87ζ54+ζ87ζ5-ζ85ζ54-ζ85ζ5 | ζ83ζ53+ζ83ζ52-ζ8ζ53-ζ8ζ52 | orthogonal faithful |
(1 18 10 39 27)(2 19 11 40 28)(3 20 12 33 29)(4 21 13 34 30)(5 22 14 35 31)(6 23 15 36 32)(7 24 16 37 25)(8 17 9 38 26)
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 25)(8 26)(17 38)(18 39)(19 40)(20 33)(21 34)(22 35)(23 36)(24 37)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)
(2 8)(3 7)(4 6)(9 11)(12 16)(13 15)(17 19)(20 24)(21 23)(25 29)(26 28)(30 32)(33 37)(34 36)(38 40)
G:=sub<Sym(40)| (1,18,10,39,27)(2,19,11,40,28)(3,20,12,33,29)(4,21,13,34,30)(5,22,14,35,31)(6,23,15,36,32)(7,24,16,37,25)(8,17,9,38,26), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(17,38)(18,39)(19,40)(20,33)(21,34)(22,35)(23,36)(24,37), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (2,8)(3,7)(4,6)(9,11)(12,16)(13,15)(17,19)(20,24)(21,23)(25,29)(26,28)(30,32)(33,37)(34,36)(38,40)>;
G:=Group( (1,18,10,39,27)(2,19,11,40,28)(3,20,12,33,29)(4,21,13,34,30)(5,22,14,35,31)(6,23,15,36,32)(7,24,16,37,25)(8,17,9,38,26), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(17,38)(18,39)(19,40)(20,33)(21,34)(22,35)(23,36)(24,37), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (2,8)(3,7)(4,6)(9,11)(12,16)(13,15)(17,19)(20,24)(21,23)(25,29)(26,28)(30,32)(33,37)(34,36)(38,40) );
G=PermutationGroup([[(1,18,10,39,27),(2,19,11,40,28),(3,20,12,33,29),(4,21,13,34,30),(5,22,14,35,31),(6,23,15,36,32),(7,24,16,37,25),(8,17,9,38,26)], [(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,25),(8,26),(17,38),(18,39),(19,40),(20,33),(21,34),(22,35),(23,36),(24,37)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40)], [(2,8),(3,7),(4,6),(9,11),(12,16),(13,15),(17,19),(20,24),(21,23),(25,29),(26,28),(30,32),(33,37),(34,36),(38,40)]])
D5×D8 is a maximal subgroup of
D5.D16 D40.C4 D16⋊D5 C16⋊D10 D40⋊C4 D8⋊13D10 D8⋊15D10 D8⋊5D10 C40⋊5D6 D15⋊D8
D5×D8 is a maximal quotient of
Dic5⋊4D8 Dic5.14D8 Dic5.5D8 D4⋊D20 D10.12D8 D10⋊D8 D20⋊3D4 D40⋊12C4 C40⋊2Q8 D10.13D8 C8⋊7D20 D20⋊2Q8 D16⋊D5 D16⋊3D5 C16⋊D10 SD32⋊D5 SD32⋊3D5 Q32⋊D5 D80⋊5C2 Dic5⋊D8 C40⋊5D4 D20⋊D4 C40⋊6D4 C40⋊5D6 D15⋊D8
Matrix representation of D5×D8 ►in GL4(𝔽41) generated by
40 | 1 | 0 | 0 |
5 | 35 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
40 | 0 | 0 | 0 |
5 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 12 | 29 |
0 | 0 | 12 | 12 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 40 |
G:=sub<GL(4,GF(41))| [40,5,0,0,1,35,0,0,0,0,1,0,0,0,0,1],[40,5,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,12,12,0,0,29,12],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,40] >;
D5×D8 in GAP, Magma, Sage, TeX
D_5\times D_8
% in TeX
G:=Group("D5xD8");
// GroupNames label
G:=SmallGroup(160,131);
// by ID
G=gap.SmallGroup(160,131);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,116,297,159,69,4613]);
// Polycyclic
G:=Group<a,b,c,d|a^5=b^2=c^8=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export