Copied to
clipboard

G = D16:D5order 320 = 26·5

2nd semidirect product of D16 and D5 acting via D5/C5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D16:2D5, D8:2D10, C16:2D10, C80:4C22, D10.14D8, C40.14C23, Dic5.16D8, D40.1C22, Dic20:4C22, (D5xD8):4C2, C4.2(D4xD5), (C5xD16):4C2, C5:D16:2C2, D8.D5:1C2, C16:D5:3C2, (C4xD5).7D4, C80:C2:3C2, C2.17(D5xD8), C20.8(C2xD4), C5:2C8.2D4, D8:3D5:3C2, C5:2(C16:C22), C10.33(C2xD8), (C5xD8):6C22, C5:2C16:1C22, (C8xD5).3C22, C8.20(C22xD5), SmallGroup(320,538)

Series: Derived Chief Lower central Upper central

C1C40 — D16:D5
C1C5C10C20C40C8xD5D5xD8 — D16:D5
C5C10C20C40 — D16:D5
C1C2C4C8D16

Generators and relations for D16:D5
 G = < a,b,c,d | a16=b2=c5=d2=1, bab=a-1, ac=ca, dad=a9, bc=cb, bd=db, dcd=c-1 >

Subgroups: 534 in 90 conjugacy classes, 31 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C5, C8, C8, C2xC4, D4, Q8, C23, D5, C10, C10, C16, C16, C2xC8, D8, D8, SD16, Q16, C2xD4, C4oD4, Dic5, Dic5, C20, D10, D10, C2xC10, M5(2), D16, D16, SD32, C2xD8, C4oD8, C5:2C8, C40, Dic10, C4xD5, D20, C2xDic5, C5:D4, C5xD4, C22xD5, C16:C22, C5:2C16, C80, C8xD5, D40, Dic20, D4:D5, D4.D5, C5xD8, D4xD5, D4:2D5, C80:C2, C16:D5, C5:D16, D8.D5, C5xD16, D5xD8, D8:3D5, D16:D5
Quotients: C1, C2, C22, D4, C23, D5, D8, C2xD4, D10, C2xD8, C22xD5, C16:C22, D4xD5, D5xD8, D16:D5

Smallest permutation representation of D16:D5
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(2 16)(3 15)(4 14)(5 13)(6 12)(7 11)(8 10)(17 29)(18 28)(19 27)(20 26)(21 25)(22 24)(30 32)(33 35)(36 48)(37 47)(38 46)(39 45)(40 44)(41 43)(49 57)(50 56)(51 55)(52 54)(58 64)(59 63)(60 62)(66 80)(67 79)(68 78)(69 77)(70 76)(71 75)(72 74)
(1 23 34 65 53)(2 24 35 66 54)(3 25 36 67 55)(4 26 37 68 56)(5 27 38 69 57)(6 28 39 70 58)(7 29 40 71 59)(8 30 41 72 60)(9 31 42 73 61)(10 32 43 74 62)(11 17 44 75 63)(12 18 45 76 64)(13 19 46 77 49)(14 20 47 78 50)(15 21 48 79 51)(16 22 33 80 52)
(1 53)(2 62)(3 55)(4 64)(5 57)(6 50)(7 59)(8 52)(9 61)(10 54)(11 63)(12 56)(13 49)(14 58)(15 51)(16 60)(17 75)(18 68)(19 77)(20 70)(21 79)(22 72)(23 65)(24 74)(25 67)(26 76)(27 69)(28 78)(29 71)(30 80)(31 73)(32 66)(33 41)(35 43)(37 45)(39 47)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(17,29)(18,28)(19,27)(20,26)(21,25)(22,24)(30,32)(33,35)(36,48)(37,47)(38,46)(39,45)(40,44)(41,43)(49,57)(50,56)(51,55)(52,54)(58,64)(59,63)(60,62)(66,80)(67,79)(68,78)(69,77)(70,76)(71,75)(72,74), (1,23,34,65,53)(2,24,35,66,54)(3,25,36,67,55)(4,26,37,68,56)(5,27,38,69,57)(6,28,39,70,58)(7,29,40,71,59)(8,30,41,72,60)(9,31,42,73,61)(10,32,43,74,62)(11,17,44,75,63)(12,18,45,76,64)(13,19,46,77,49)(14,20,47,78,50)(15,21,48,79,51)(16,22,33,80,52), (1,53)(2,62)(3,55)(4,64)(5,57)(6,50)(7,59)(8,52)(9,61)(10,54)(11,63)(12,56)(13,49)(14,58)(15,51)(16,60)(17,75)(18,68)(19,77)(20,70)(21,79)(22,72)(23,65)(24,74)(25,67)(26,76)(27,69)(28,78)(29,71)(30,80)(31,73)(32,66)(33,41)(35,43)(37,45)(39,47)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(17,29)(18,28)(19,27)(20,26)(21,25)(22,24)(30,32)(33,35)(36,48)(37,47)(38,46)(39,45)(40,44)(41,43)(49,57)(50,56)(51,55)(52,54)(58,64)(59,63)(60,62)(66,80)(67,79)(68,78)(69,77)(70,76)(71,75)(72,74), (1,23,34,65,53)(2,24,35,66,54)(3,25,36,67,55)(4,26,37,68,56)(5,27,38,69,57)(6,28,39,70,58)(7,29,40,71,59)(8,30,41,72,60)(9,31,42,73,61)(10,32,43,74,62)(11,17,44,75,63)(12,18,45,76,64)(13,19,46,77,49)(14,20,47,78,50)(15,21,48,79,51)(16,22,33,80,52), (1,53)(2,62)(3,55)(4,64)(5,57)(6,50)(7,59)(8,52)(9,61)(10,54)(11,63)(12,56)(13,49)(14,58)(15,51)(16,60)(17,75)(18,68)(19,77)(20,70)(21,79)(22,72)(23,65)(24,74)(25,67)(26,76)(27,69)(28,78)(29,71)(30,80)(31,73)(32,66)(33,41)(35,43)(37,45)(39,47) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(2,16),(3,15),(4,14),(5,13),(6,12),(7,11),(8,10),(17,29),(18,28),(19,27),(20,26),(21,25),(22,24),(30,32),(33,35),(36,48),(37,47),(38,46),(39,45),(40,44),(41,43),(49,57),(50,56),(51,55),(52,54),(58,64),(59,63),(60,62),(66,80),(67,79),(68,78),(69,77),(70,76),(71,75),(72,74)], [(1,23,34,65,53),(2,24,35,66,54),(3,25,36,67,55),(4,26,37,68,56),(5,27,38,69,57),(6,28,39,70,58),(7,29,40,71,59),(8,30,41,72,60),(9,31,42,73,61),(10,32,43,74,62),(11,17,44,75,63),(12,18,45,76,64),(13,19,46,77,49),(14,20,47,78,50),(15,21,48,79,51),(16,22,33,80,52)], [(1,53),(2,62),(3,55),(4,64),(5,57),(6,50),(7,59),(8,52),(9,61),(10,54),(11,63),(12,56),(13,49),(14,58),(15,51),(16,60),(17,75),(18,68),(19,77),(20,70),(21,79),(22,72),(23,65),(24,74),(25,67),(26,76),(27,69),(28,78),(29,71),(30,80),(31,73),(32,66),(33,41),(35,43),(37,45),(39,47)]])

38 conjugacy classes

class 1 2A2B2C2D2E4A4B4C5A5B8A8B8C10A10B10C10D10E10F16A16B16C16D20A20B40A40B40C40D80A···80H
order122222444558881010101010101616161620204040404080···80
size118810402104022222022161616164420204444444···4

38 irreducible representations

dim1111111122222224444
type++++++++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D5D8D8D10D10C16:C22D4xD5D5xD8D16:D5
kernelD16:D5C80:C2C16:D5C5:D16D8.D5C5xD16D5xD8D8:3D5C5:2C8C4xD5D16Dic5D10C16D8C5C4C2C1
# reps1111111111222242248

Matrix representation of D16:D5 in GL4(F241) generated by

1093211158
20913283230
115162120190
7912651121
,
1000
0100
102400
010240
,
0100
24018900
0001
00240189
,
0100
1000
0001
0010
G:=sub<GL(4,GF(241))| [109,209,115,79,32,132,162,126,11,83,120,51,158,230,190,121],[1,0,1,0,0,1,0,1,0,0,240,0,0,0,0,240],[0,240,0,0,1,189,0,0,0,0,0,240,0,0,1,189],[0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0] >;

D16:D5 in GAP, Magma, Sage, TeX

D_{16}\rtimes D_5
% in TeX

G:=Group("D16:D5");
// GroupNames label

G:=SmallGroup(320,538);
// by ID

G=gap.SmallGroup(320,538);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,758,135,346,185,192,851,438,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^16=b^2=c^5=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^9,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<