Copied to
clipboard

G = D815D10order 320 = 26·5

4th semidirect product of D8 and D10 acting through Inn(D8)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D815D10, Q1613D10, D20.45D4, SD1611D10, D4019C22, C20.16C24, C40.38C23, Dic10.45D4, D20.11C23, C4○D84D5, (D5×D8)⋊7C2, C53(D4○D8), C4○D41D10, (C2×C8)⋊13D10, C5⋊D4.1D4, (C2×D40)⋊23C2, D40⋊C26C2, D4⋊D53C22, C4.143(D4×D5), (D4×D5)⋊2C22, (C8×D5)⋊8C22, Q8⋊D52C22, D4⋊D107C2, D48D105C2, Q8.D107C2, C22.8(D4×D5), (C2×C40)⋊12C22, D10.52(C2×D4), C20.349(C2×D4), (C5×D8)⋊13C22, C52C8.7C23, (C4×D5).9C23, C8.16(C22×D5), C4.16(C23×D5), D20.3C47C2, (C2×D20)⋊34C22, C8⋊D511C22, Dic5.58(C2×D4), Q82D52C22, (C5×Q16)⋊11C22, D4.10(C22×D5), (C5×D4).10C23, Q8.10(C22×D5), (C5×Q8).10C23, (C2×C20).533C23, C4○D20.54C22, (C5×SD16)⋊11C22, C10.117(C22×D4), C4.Dic530C22, C2.90(C2×D4×D5), (C5×C4○D8)⋊5C2, (C2×C10).13(C2×D4), (C5×C4○D4)⋊3C22, (C2×C4).232(C22×D5), SmallGroup(320,1441)

Series: Derived Chief Lower central Upper central

C1C20 — D815D10
C1C5C10C20C4×D5C4○D20D48D10 — D815D10
C5C10C20 — D815D10
C1C2C2×C4C4○D8

Generators and relations for D815D10
 G = < a,b,c,d | a8=b2=c10=d2=1, bab=dad=a-1, ac=ca, cbc-1=a4b, dbd=a2b, dcd=c-1 >

Subgroups: 1238 in 268 conjugacy classes, 99 normal (31 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, D5, C10, C10, C2×C8, C2×C8, M4(2), D8, D8, SD16, SD16, Q16, C2×D4, C4○D4, C4○D4, Dic5, C20, C20, D10, D10, C2×C10, C2×C10, C8○D4, C2×D8, C4○D8, C4○D8, C8⋊C22, 2+ 1+4, C52C8, C40, Dic10, C4×D5, C4×D5, D20, D20, D20, C5⋊D4, C5⋊D4, C2×C20, C2×C20, C5×D4, C5×D4, C5×Q8, C22×D5, D4○D8, C8×D5, C8⋊D5, D40, C4.Dic5, D4⋊D5, Q8⋊D5, C2×C40, C5×D8, C5×SD16, C5×Q16, C2×D20, C2×D20, C4○D20, C4○D20, D4×D5, D4×D5, Q82D5, C5×C4○D4, D20.3C4, C2×D40, D5×D8, D40⋊C2, Q8.D10, D4⋊D10, C5×C4○D8, D48D10, D815D10
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C24, D10, C22×D4, C22×D5, D4○D8, D4×D5, C23×D5, C2×D4×D5, D815D10

Smallest permutation representation of D815D10
On 80 points
Generators in S80
(1 19 30 46 63 73 40 55)(2 20 21 47 64 74 31 56)(3 11 22 48 65 75 32 57)(4 12 23 49 66 76 33 58)(5 13 24 50 67 77 34 59)(6 14 25 41 68 78 35 60)(7 15 26 42 69 79 36 51)(8 16 27 43 70 80 37 52)(9 17 28 44 61 71 38 53)(10 18 29 45 62 72 39 54)
(2 64)(4 66)(6 68)(8 70)(10 62)(11 57)(12 49)(13 59)(14 41)(15 51)(16 43)(17 53)(18 45)(19 55)(20 47)(22 32)(24 34)(26 36)(28 38)(30 40)(42 79)(44 71)(46 73)(48 75)(50 77)(52 80)(54 72)(56 74)(58 76)(60 78)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 18)(2 17)(3 16)(4 15)(5 14)(6 13)(7 12)(8 11)(9 20)(10 19)(21 53)(22 52)(23 51)(24 60)(25 59)(26 58)(27 57)(28 56)(29 55)(30 54)(31 44)(32 43)(33 42)(34 41)(35 50)(36 49)(37 48)(38 47)(39 46)(40 45)(61 74)(62 73)(63 72)(64 71)(65 80)(66 79)(67 78)(68 77)(69 76)(70 75)

G:=sub<Sym(80)| (1,19,30,46,63,73,40,55)(2,20,21,47,64,74,31,56)(3,11,22,48,65,75,32,57)(4,12,23,49,66,76,33,58)(5,13,24,50,67,77,34,59)(6,14,25,41,68,78,35,60)(7,15,26,42,69,79,36,51)(8,16,27,43,70,80,37,52)(9,17,28,44,61,71,38,53)(10,18,29,45,62,72,39,54), (2,64)(4,66)(6,68)(8,70)(10,62)(11,57)(12,49)(13,59)(14,41)(15,51)(16,43)(17,53)(18,45)(19,55)(20,47)(22,32)(24,34)(26,36)(28,38)(30,40)(42,79)(44,71)(46,73)(48,75)(50,77)(52,80)(54,72)(56,74)(58,76)(60,78), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,20)(10,19)(21,53)(22,52)(23,51)(24,60)(25,59)(26,58)(27,57)(28,56)(29,55)(30,54)(31,44)(32,43)(33,42)(34,41)(35,50)(36,49)(37,48)(38,47)(39,46)(40,45)(61,74)(62,73)(63,72)(64,71)(65,80)(66,79)(67,78)(68,77)(69,76)(70,75)>;

G:=Group( (1,19,30,46,63,73,40,55)(2,20,21,47,64,74,31,56)(3,11,22,48,65,75,32,57)(4,12,23,49,66,76,33,58)(5,13,24,50,67,77,34,59)(6,14,25,41,68,78,35,60)(7,15,26,42,69,79,36,51)(8,16,27,43,70,80,37,52)(9,17,28,44,61,71,38,53)(10,18,29,45,62,72,39,54), (2,64)(4,66)(6,68)(8,70)(10,62)(11,57)(12,49)(13,59)(14,41)(15,51)(16,43)(17,53)(18,45)(19,55)(20,47)(22,32)(24,34)(26,36)(28,38)(30,40)(42,79)(44,71)(46,73)(48,75)(50,77)(52,80)(54,72)(56,74)(58,76)(60,78), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,20)(10,19)(21,53)(22,52)(23,51)(24,60)(25,59)(26,58)(27,57)(28,56)(29,55)(30,54)(31,44)(32,43)(33,42)(34,41)(35,50)(36,49)(37,48)(38,47)(39,46)(40,45)(61,74)(62,73)(63,72)(64,71)(65,80)(66,79)(67,78)(68,77)(69,76)(70,75) );

G=PermutationGroup([[(1,19,30,46,63,73,40,55),(2,20,21,47,64,74,31,56),(3,11,22,48,65,75,32,57),(4,12,23,49,66,76,33,58),(5,13,24,50,67,77,34,59),(6,14,25,41,68,78,35,60),(7,15,26,42,69,79,36,51),(8,16,27,43,70,80,37,52),(9,17,28,44,61,71,38,53),(10,18,29,45,62,72,39,54)], [(2,64),(4,66),(6,68),(8,70),(10,62),(11,57),(12,49),(13,59),(14,41),(15,51),(16,43),(17,53),(18,45),(19,55),(20,47),(22,32),(24,34),(26,36),(28,38),(30,40),(42,79),(44,71),(46,73),(48,75),(50,77),(52,80),(54,72),(56,74),(58,76),(60,78)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,20),(10,19),(21,53),(22,52),(23,51),(24,60),(25,59),(26,58),(27,57),(28,56),(29,55),(30,54),(31,44),(32,43),(33,42),(34,41),(35,50),(36,49),(37,48),(38,47),(39,46),(40,45),(61,74),(62,73),(63,72),(64,71),(65,80),(66,79),(67,78),(68,77),(69,76),(70,75)]])

50 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J4A4B4C4D4E4F5A5B8A8B8C8D8E10A10B10C10D10E10F10G10H20A20B20C20D20E20F20G20H20I20J40A···40H
order12222222222444444558888810101010101010102020202020202020202040···40
size11244101020202020224410102222420202244888822224488884···4

50 irreducible representations

dim1111111112222222224444
type++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2D4D4D4D5D10D10D10D10D10D4○D8D4×D5D4×D5D815D10
kernelD815D10D20.3C4C2×D40D5×D8D40⋊C2Q8.D10D4⋊D10C5×C4○D8D48D10Dic10D20C5⋊D4C4○D8C2×C8D8SD16Q16C4○D4C5C4C22C1
# reps1112422121122224242228

Matrix representation of D815D10 in GL4(𝔽41) generated by

290290
029029
120290
012029
,
0010
0001
1000
0100
,
003027
001414
111400
272700
,
9153226
373249
32263226
4949
G:=sub<GL(4,GF(41))| [29,0,12,0,0,29,0,12,29,0,29,0,0,29,0,29],[0,0,1,0,0,0,0,1,1,0,0,0,0,1,0,0],[0,0,11,27,0,0,14,27,30,14,0,0,27,14,0,0],[9,37,32,4,15,32,26,9,32,4,32,4,26,9,26,9] >;

D815D10 in GAP, Magma, Sage, TeX

D_8\rtimes_{15}D_{10}
% in TeX

G:=Group("D8:15D10");
// GroupNames label

G:=SmallGroup(320,1441);
// by ID

G=gap.SmallGroup(320,1441);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,387,570,185,438,235,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^10=d^2=1,b*a*b=d*a*d=a^-1,a*c=c*a,c*b*c^-1=a^4*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽