Copied to
clipboard

G = D8:13D10order 320 = 26·5

2nd semidirect product of D8 and D10 acting through Inn(D8)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D8:13D10, D20.28D4, C20.4C24, D40:16C22, C40.40C23, D20.2C23, Dic10.28D4, Dic20:14C22, Dic10.2C23, (D5xD8):6C2, (C2xC8):9D10, C5:2(D4oD8), (C10xD8):3C2, (C2xD8):12D5, C4.75(D4xD5), C5:D4.8D4, (C2xD4):14D10, D8:3D5:6C2, D8:D5:5C2, (C2xC40):3C22, D4:D5:1C22, C20.79(C2xD4), (C8xD5):7C22, (D4xD5):1C22, D40:7C2:3C2, D4:6D10:5C2, C4.4(C23xD5), D10.49(C2xD4), C4oD20:3C22, (C5xD8):11C22, C5:2C8.1C23, D4.D5:1C22, (C5xD4).2C23, D4.2(C22xD5), (C4xD5).2C23, C22.20(D4xD5), C8.10(C22xD5), D20.3C4:2C2, D4.D10:7C2, D4:2D5:1C22, (D4xC10):20C22, C40:C2:14C22, C8:D5:13C22, Dic5.55(C2xD4), (C2xC20).521C23, C10.105(C22xD4), C4.Dic5:28C22, C2.78(C2xD4xD5), (C2xC10).394(C2xD4), (C2xC4).229(C22xD5), SmallGroup(320,1429)

Series: Derived Chief Lower central Upper central

C1C20 — D8:13D10
C1C5C10C20C4xD5C4oD20D4:6D10 — D8:13D10
C5C10C20 — D8:13D10
C1C2C2xC4C2xD8

Generators and relations for D8:13D10
 G = < a,b,c,d | a8=b2=c10=d2=1, bab=cac-1=a-1, ad=da, cbc-1=a6b, dbd=a4b, dcd=c-1 >

Subgroups: 1142 in 268 conjugacy classes, 99 normal (29 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2xC4, C2xC4, D4, D4, Q8, C23, D5, C10, C10, C2xC8, C2xC8, M4(2), D8, D8, SD16, Q16, C2xD4, C2xD4, C4oD4, Dic5, Dic5, C20, D10, D10, C2xC10, C2xC10, C8oD4, C2xD8, C2xD8, C4oD8, C8:C22, 2+ 1+4, C5:2C8, C40, Dic10, Dic10, C4xD5, C4xD5, D20, D20, C2xDic5, C5:D4, C5:D4, C2xC20, C5xD4, C5xD4, C22xD5, C22xC10, D4oD8, C8xD5, C8:D5, C40:C2, D40, Dic20, C4.Dic5, D4:D5, D4.D5, C2xC40, C5xD8, C4oD20, C4oD20, D4xD5, D4xD5, D4:2D5, D4:2D5, C2xC5:D4, D4xC10, D20.3C4, D40:7C2, D5xD8, D8:D5, D8:3D5, D4.D10, C10xD8, D4:6D10, D8:13D10
Quotients: C1, C2, C22, D4, C23, D5, C2xD4, C24, D10, C22xD4, C22xD5, D4oD8, D4xD5, C23xD5, C2xD4xD5, D8:13D10

Smallest permutation representation of D8:13D10
On 80 points
Generators in S80
(1 40 28 20 73 53 66 48)(2 49 67 54 74 11 29 31)(3 32 30 12 75 55 68 50)(4 41 69 56 76 13 21 33)(5 34 22 14 77 57 70 42)(6 43 61 58 78 15 23 35)(7 36 24 16 79 59 62 44)(8 45 63 60 80 17 25 37)(9 38 26 18 71 51 64 46)(10 47 65 52 72 19 27 39)
(2 29)(4 21)(6 23)(8 25)(10 27)(11 49)(12 55)(13 41)(14 57)(15 43)(16 59)(17 45)(18 51)(19 47)(20 53)(22 70)(24 62)(26 64)(28 66)(30 68)(32 50)(34 42)(36 44)(38 46)(40 48)(61 78)(63 80)(65 72)(67 74)(69 76)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 47)(2 46)(3 45)(4 44)(5 43)(6 42)(7 41)(8 50)(9 49)(10 48)(11 71)(12 80)(13 79)(14 78)(15 77)(16 76)(17 75)(18 74)(19 73)(20 72)(21 59)(22 58)(23 57)(24 56)(25 55)(26 54)(27 53)(28 52)(29 51)(30 60)(31 64)(32 63)(33 62)(34 61)(35 70)(36 69)(37 68)(38 67)(39 66)(40 65)

G:=sub<Sym(80)| (1,40,28,20,73,53,66,48)(2,49,67,54,74,11,29,31)(3,32,30,12,75,55,68,50)(4,41,69,56,76,13,21,33)(5,34,22,14,77,57,70,42)(6,43,61,58,78,15,23,35)(7,36,24,16,79,59,62,44)(8,45,63,60,80,17,25,37)(9,38,26,18,71,51,64,46)(10,47,65,52,72,19,27,39), (2,29)(4,21)(6,23)(8,25)(10,27)(11,49)(12,55)(13,41)(14,57)(15,43)(16,59)(17,45)(18,51)(19,47)(20,53)(22,70)(24,62)(26,64)(28,66)(30,68)(32,50)(34,42)(36,44)(38,46)(40,48)(61,78)(63,80)(65,72)(67,74)(69,76), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,47)(2,46)(3,45)(4,44)(5,43)(6,42)(7,41)(8,50)(9,49)(10,48)(11,71)(12,80)(13,79)(14,78)(15,77)(16,76)(17,75)(18,74)(19,73)(20,72)(21,59)(22,58)(23,57)(24,56)(25,55)(26,54)(27,53)(28,52)(29,51)(30,60)(31,64)(32,63)(33,62)(34,61)(35,70)(36,69)(37,68)(38,67)(39,66)(40,65)>;

G:=Group( (1,40,28,20,73,53,66,48)(2,49,67,54,74,11,29,31)(3,32,30,12,75,55,68,50)(4,41,69,56,76,13,21,33)(5,34,22,14,77,57,70,42)(6,43,61,58,78,15,23,35)(7,36,24,16,79,59,62,44)(8,45,63,60,80,17,25,37)(9,38,26,18,71,51,64,46)(10,47,65,52,72,19,27,39), (2,29)(4,21)(6,23)(8,25)(10,27)(11,49)(12,55)(13,41)(14,57)(15,43)(16,59)(17,45)(18,51)(19,47)(20,53)(22,70)(24,62)(26,64)(28,66)(30,68)(32,50)(34,42)(36,44)(38,46)(40,48)(61,78)(63,80)(65,72)(67,74)(69,76), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,47)(2,46)(3,45)(4,44)(5,43)(6,42)(7,41)(8,50)(9,49)(10,48)(11,71)(12,80)(13,79)(14,78)(15,77)(16,76)(17,75)(18,74)(19,73)(20,72)(21,59)(22,58)(23,57)(24,56)(25,55)(26,54)(27,53)(28,52)(29,51)(30,60)(31,64)(32,63)(33,62)(34,61)(35,70)(36,69)(37,68)(38,67)(39,66)(40,65) );

G=PermutationGroup([[(1,40,28,20,73,53,66,48),(2,49,67,54,74,11,29,31),(3,32,30,12,75,55,68,50),(4,41,69,56,76,13,21,33),(5,34,22,14,77,57,70,42),(6,43,61,58,78,15,23,35),(7,36,24,16,79,59,62,44),(8,45,63,60,80,17,25,37),(9,38,26,18,71,51,64,46),(10,47,65,52,72,19,27,39)], [(2,29),(4,21),(6,23),(8,25),(10,27),(11,49),(12,55),(13,41),(14,57),(15,43),(16,59),(17,45),(18,51),(19,47),(20,53),(22,70),(24,62),(26,64),(28,66),(30,68),(32,50),(34,42),(36,44),(38,46),(40,48),(61,78),(63,80),(65,72),(67,74),(69,76)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,47),(2,46),(3,45),(4,44),(5,43),(6,42),(7,41),(8,50),(9,49),(10,48),(11,71),(12,80),(13,79),(14,78),(15,77),(16,76),(17,75),(18,74),(19,73),(20,72),(21,59),(22,58),(23,57),(24,56),(25,55),(26,54),(27,53),(28,52),(29,51),(30,60),(31,64),(32,63),(33,62),(34,61),(35,70),(36,69),(37,68),(38,67),(39,66),(40,65)]])

50 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J4A4B4C4D4E4F5A5B8A8B8C8D8E10A···10F10G···10N20A20B20C20D40A···40H
order12222222222444444558888810···1010···102020202040···40
size11244441010202022101020202222420202···28···844444···4

50 irreducible representations

dim11111111122222224444
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2D4D4D4D5D10D10D10D4oD8D4xD5D4xD5D8:13D10
kernelD8:13D10D20.3C4D40:7C2D5xD8D8:D5D8:3D5D4.D10C10xD8D4:6D10Dic10D20C5:D4C2xD8C2xC8D8C2xD4C5C4C22C1
# reps11124221211222842228

Matrix representation of D8:13D10 in GL6(F41)

4000000
0400000
00242400
0029000
000121229
0029291212
,
4000000
0400000
001000
00404000
000010
00400040
,
35350000
6400000
00001717
00290240
000122929
0029291212
,
35350000
4060000
00400039
0010401
004040040
000001

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,24,29,0,29,0,0,24,0,12,29,0,0,0,0,12,12,0,0,0,0,29,12],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,40,0,40,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,40],[35,6,0,0,0,0,35,40,0,0,0,0,0,0,0,29,0,29,0,0,0,0,12,29,0,0,17,24,29,12,0,0,17,0,29,12],[35,40,0,0,0,0,35,6,0,0,0,0,0,0,40,1,40,0,0,0,0,0,40,0,0,0,0,40,0,0,0,0,39,1,40,1] >;

D8:13D10 in GAP, Magma, Sage, TeX

D_8\rtimes_{13}D_{10}
% in TeX

G:=Group("D8:13D10");
// GroupNames label

G:=SmallGroup(320,1429);
// by ID

G=gap.SmallGroup(320,1429);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,185,438,235,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^10=d^2=1,b*a*b=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=a^6*b,d*b*d=a^4*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<