metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D8⋊13D10, D20.28D4, C20.4C24, D40⋊16C22, C40.40C23, D20.2C23, Dic10.28D4, Dic20⋊14C22, Dic10.2C23, (D5×D8)⋊6C2, (C2×C8)⋊9D10, C5⋊2(D4○D8), (C10×D8)⋊3C2, (C2×D8)⋊12D5, C4.75(D4×D5), C5⋊D4.8D4, (C2×D4)⋊14D10, D8⋊3D5⋊6C2, D8⋊D5⋊5C2, (C2×C40)⋊3C22, D4⋊D5⋊1C22, C20.79(C2×D4), (C8×D5)⋊7C22, (D4×D5)⋊1C22, D40⋊7C2⋊3C2, D4⋊6D10⋊5C2, C4.4(C23×D5), D10.49(C2×D4), C4○D20⋊3C22, (C5×D8)⋊11C22, C5⋊2C8.1C23, D4.D5⋊1C22, (C5×D4).2C23, D4.2(C22×D5), (C4×D5).2C23, C22.20(D4×D5), C8.10(C22×D5), D20.3C4⋊2C2, D4.D10⋊7C2, D4⋊2D5⋊1C22, (D4×C10)⋊20C22, C40⋊C2⋊14C22, C8⋊D5⋊13C22, Dic5.55(C2×D4), (C2×C20).521C23, C10.105(C22×D4), C4.Dic5⋊28C22, C2.78(C2×D4×D5), (C2×C10).394(C2×D4), (C2×C4).229(C22×D5), SmallGroup(320,1429)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D8⋊13D10
G = < a,b,c,d | a8=b2=c10=d2=1, bab=cac-1=a-1, ad=da, cbc-1=a6b, dbd=a4b, dcd=c-1 >
Subgroups: 1142 in 268 conjugacy classes, 99 normal (29 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, D4, Q8, C23, D5, C10, C10, C2×C8, C2×C8, M4(2), D8, D8, SD16, Q16, C2×D4, C2×D4, C4○D4, Dic5, Dic5, C20, D10, D10, C2×C10, C2×C10, C8○D4, C2×D8, C2×D8, C4○D8, C8⋊C22, 2+ 1+4, C5⋊2C8, C40, Dic10, Dic10, C4×D5, C4×D5, D20, D20, C2×Dic5, C5⋊D4, C5⋊D4, C2×C20, C5×D4, C5×D4, C22×D5, C22×C10, D4○D8, C8×D5, C8⋊D5, C40⋊C2, D40, Dic20, C4.Dic5, D4⋊D5, D4.D5, C2×C40, C5×D8, C4○D20, C4○D20, D4×D5, D4×D5, D4⋊2D5, D4⋊2D5, C2×C5⋊D4, D4×C10, D20.3C4, D40⋊7C2, D5×D8, D8⋊D5, D8⋊3D5, D4.D10, C10×D8, D4⋊6D10, D8⋊13D10
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C24, D10, C22×D4, C22×D5, D4○D8, D4×D5, C23×D5, C2×D4×D5, D8⋊13D10
(1 40 28 20 73 53 66 48)(2 49 67 54 74 11 29 31)(3 32 30 12 75 55 68 50)(4 41 69 56 76 13 21 33)(5 34 22 14 77 57 70 42)(6 43 61 58 78 15 23 35)(7 36 24 16 79 59 62 44)(8 45 63 60 80 17 25 37)(9 38 26 18 71 51 64 46)(10 47 65 52 72 19 27 39)
(2 29)(4 21)(6 23)(8 25)(10 27)(11 49)(12 55)(13 41)(14 57)(15 43)(16 59)(17 45)(18 51)(19 47)(20 53)(22 70)(24 62)(26 64)(28 66)(30 68)(32 50)(34 42)(36 44)(38 46)(40 48)(61 78)(63 80)(65 72)(67 74)(69 76)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 47)(2 46)(3 45)(4 44)(5 43)(6 42)(7 41)(8 50)(9 49)(10 48)(11 71)(12 80)(13 79)(14 78)(15 77)(16 76)(17 75)(18 74)(19 73)(20 72)(21 59)(22 58)(23 57)(24 56)(25 55)(26 54)(27 53)(28 52)(29 51)(30 60)(31 64)(32 63)(33 62)(34 61)(35 70)(36 69)(37 68)(38 67)(39 66)(40 65)
G:=sub<Sym(80)| (1,40,28,20,73,53,66,48)(2,49,67,54,74,11,29,31)(3,32,30,12,75,55,68,50)(4,41,69,56,76,13,21,33)(5,34,22,14,77,57,70,42)(6,43,61,58,78,15,23,35)(7,36,24,16,79,59,62,44)(8,45,63,60,80,17,25,37)(9,38,26,18,71,51,64,46)(10,47,65,52,72,19,27,39), (2,29)(4,21)(6,23)(8,25)(10,27)(11,49)(12,55)(13,41)(14,57)(15,43)(16,59)(17,45)(18,51)(19,47)(20,53)(22,70)(24,62)(26,64)(28,66)(30,68)(32,50)(34,42)(36,44)(38,46)(40,48)(61,78)(63,80)(65,72)(67,74)(69,76), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,47)(2,46)(3,45)(4,44)(5,43)(6,42)(7,41)(8,50)(9,49)(10,48)(11,71)(12,80)(13,79)(14,78)(15,77)(16,76)(17,75)(18,74)(19,73)(20,72)(21,59)(22,58)(23,57)(24,56)(25,55)(26,54)(27,53)(28,52)(29,51)(30,60)(31,64)(32,63)(33,62)(34,61)(35,70)(36,69)(37,68)(38,67)(39,66)(40,65)>;
G:=Group( (1,40,28,20,73,53,66,48)(2,49,67,54,74,11,29,31)(3,32,30,12,75,55,68,50)(4,41,69,56,76,13,21,33)(5,34,22,14,77,57,70,42)(6,43,61,58,78,15,23,35)(7,36,24,16,79,59,62,44)(8,45,63,60,80,17,25,37)(9,38,26,18,71,51,64,46)(10,47,65,52,72,19,27,39), (2,29)(4,21)(6,23)(8,25)(10,27)(11,49)(12,55)(13,41)(14,57)(15,43)(16,59)(17,45)(18,51)(19,47)(20,53)(22,70)(24,62)(26,64)(28,66)(30,68)(32,50)(34,42)(36,44)(38,46)(40,48)(61,78)(63,80)(65,72)(67,74)(69,76), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,47)(2,46)(3,45)(4,44)(5,43)(6,42)(7,41)(8,50)(9,49)(10,48)(11,71)(12,80)(13,79)(14,78)(15,77)(16,76)(17,75)(18,74)(19,73)(20,72)(21,59)(22,58)(23,57)(24,56)(25,55)(26,54)(27,53)(28,52)(29,51)(30,60)(31,64)(32,63)(33,62)(34,61)(35,70)(36,69)(37,68)(38,67)(39,66)(40,65) );
G=PermutationGroup([[(1,40,28,20,73,53,66,48),(2,49,67,54,74,11,29,31),(3,32,30,12,75,55,68,50),(4,41,69,56,76,13,21,33),(5,34,22,14,77,57,70,42),(6,43,61,58,78,15,23,35),(7,36,24,16,79,59,62,44),(8,45,63,60,80,17,25,37),(9,38,26,18,71,51,64,46),(10,47,65,52,72,19,27,39)], [(2,29),(4,21),(6,23),(8,25),(10,27),(11,49),(12,55),(13,41),(14,57),(15,43),(16,59),(17,45),(18,51),(19,47),(20,53),(22,70),(24,62),(26,64),(28,66),(30,68),(32,50),(34,42),(36,44),(38,46),(40,48),(61,78),(63,80),(65,72),(67,74),(69,76)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,47),(2,46),(3,45),(4,44),(5,43),(6,42),(7,41),(8,50),(9,49),(10,48),(11,71),(12,80),(13,79),(14,78),(15,77),(16,76),(17,75),(18,74),(19,73),(20,72),(21,59),(22,58),(23,57),(24,56),(25,55),(26,54),(27,53),(28,52),(29,51),(30,60),(31,64),(32,63),(33,62),(34,61),(35,70),(36,69),(37,68),(38,67),(39,66),(40,65)]])
50 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 4A | 4B | 4C | 4D | 4E | 4F | 5A | 5B | 8A | 8B | 8C | 8D | 8E | 10A | ··· | 10F | 10G | ··· | 10N | 20A | 20B | 20C | 20D | 40A | ··· | 40H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | 20 | 20 | 20 | 40 | ··· | 40 |
size | 1 | 1 | 2 | 4 | 4 | 4 | 4 | 10 | 10 | 20 | 20 | 2 | 2 | 10 | 10 | 20 | 20 | 2 | 2 | 2 | 2 | 4 | 20 | 20 | 2 | ··· | 2 | 8 | ··· | 8 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D5 | D10 | D10 | D10 | D4○D8 | D4×D5 | D4×D5 | D8⋊13D10 |
kernel | D8⋊13D10 | D20.3C4 | D40⋊7C2 | D5×D8 | D8⋊D5 | D8⋊3D5 | D4.D10 | C10×D8 | D4⋊6D10 | Dic10 | D20 | C5⋊D4 | C2×D8 | C2×C8 | D8 | C2×D4 | C5 | C4 | C22 | C1 |
# reps | 1 | 1 | 1 | 2 | 4 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 8 | 4 | 2 | 2 | 2 | 8 |
Matrix representation of D8⋊13D10 ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 24 | 24 | 0 | 0 |
0 | 0 | 29 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 12 | 29 |
0 | 0 | 29 | 29 | 12 | 12 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 40 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 40 | 0 | 0 | 40 |
35 | 35 | 0 | 0 | 0 | 0 |
6 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 17 | 17 |
0 | 0 | 29 | 0 | 24 | 0 |
0 | 0 | 0 | 12 | 29 | 29 |
0 | 0 | 29 | 29 | 12 | 12 |
35 | 35 | 0 | 0 | 0 | 0 |
40 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 39 |
0 | 0 | 1 | 0 | 40 | 1 |
0 | 0 | 40 | 40 | 0 | 40 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,24,29,0,29,0,0,24,0,12,29,0,0,0,0,12,12,0,0,0,0,29,12],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,40,0,40,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,40],[35,6,0,0,0,0,35,40,0,0,0,0,0,0,0,29,0,29,0,0,0,0,12,29,0,0,17,24,29,12,0,0,17,0,29,12],[35,40,0,0,0,0,35,6,0,0,0,0,0,0,40,1,40,0,0,0,0,0,40,0,0,0,0,40,0,0,0,0,39,1,40,1] >;
D8⋊13D10 in GAP, Magma, Sage, TeX
D_8\rtimes_{13}D_{10}
% in TeX
G:=Group("D8:13D10");
// GroupNames label
G:=SmallGroup(320,1429);
// by ID
G=gap.SmallGroup(320,1429);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,185,438,235,102,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=c^10=d^2=1,b*a*b=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=a^6*b,d*b*d=a^4*b,d*c*d=c^-1>;
// generators/relations