Extensions 1→N→G→Q→1 with N=C41D4 and Q=D5

Direct product G=N×Q with N=C41D4 and Q=D5
dρLabelID
D5×C41D480D5xC4:1D4320,1386

Semidirect products G=N:Q with N=C41D4 and Q=D5
extensionφ:Q→Out NdρLabelID
C41D41D5 = C202D8φ: D5/C5C2 ⊆ Out C41D4160C4:1D4:1D5320,699
C41D42D5 = C20⋊D8φ: D5/C5C2 ⊆ Out C41D4160C4:1D4:2D5320,700
C41D43D5 = C42.74D10φ: D5/C5C2 ⊆ Out C41D4160C4:1D4:3D5320,701
C41D44D5 = D205D4φ: D5/C5C2 ⊆ Out C41D4404C4:1D4:4D5320,704
C41D45D5 = C4226D10φ: D5/C5C2 ⊆ Out C41D480C4:1D4:5D5320,1387
C41D46D5 = D2011D4φ: D5/C5C2 ⊆ Out C41D480C4:1D4:6D5320,1389
C41D47D5 = Dic1011D4φ: D5/C5C2 ⊆ Out C41D4160C4:1D4:7D5320,1390
C41D48D5 = C42.168D10φ: D5/C5C2 ⊆ Out C41D4160C4:1D4:8D5320,1391
C41D49D5 = C4228D10φ: D5/C5C2 ⊆ Out C41D480C4:1D4:9D5320,1392
C41D410D5 = C42.238D10φ: trivial image160C4:1D4:10D5320,1388

Non-split extensions G=N.Q with N=C41D4 and Q=D5
extensionφ:Q→Out NdρLabelID
C41D4.1D5 = C20.9D8φ: D5/C5C2 ⊆ Out C41D4160C4:1D4.1D5320,102
C41D4.2D5 = C423Dic5φ: D5/C5C2 ⊆ Out C41D4404C4:1D4.2D5320,103
C41D4.3D5 = C20.16D8φ: D5/C5C2 ⊆ Out C41D4160C4:1D4.3D5320,697
C41D4.4D5 = C42.72D10φ: D5/C5C2 ⊆ Out C41D4160C4:1D4.4D5320,698
C41D4.5D5 = Dic109D4φ: D5/C5C2 ⊆ Out C41D4160C4:1D4.5D5320,702
C41D4.6D5 = C204SD16φ: D5/C5C2 ⊆ Out C41D4160C4:1D4.6D5320,703
C41D4.7D5 = C42.166D10φ: D5/C5C2 ⊆ Out C41D4160C4:1D4.7D5320,1385

׿
×
𝔽