Copied to
clipboard

G = Dic109D4order 320 = 26·5

2nd semidirect product of Dic10 and D4 acting via D4/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C203SD16, Dic109D4, C42.75D10, C4.54(D4×D5), C42(D4.D5), C203C832C2, C54(C4⋊SD16), C41D4.5D5, C20.33(C2×D4), (C2×D4).58D10, (C2×C20).149D4, (C4×Dic10)⋊22C2, C20.77(C4○D4), D4⋊Dic523C2, C4.4(D42D5), C10.58(C2×SD16), C2.13(C202D4), C10.96(C8⋊C22), (C4×C20).123C22, (C2×C20).393C23, (D4×C10).74C22, C10.104(C4⋊D4), C4⋊Dic5.345C22, C2.17(D4.D10), (C2×Dic10).282C22, (C2×D4.D5)⋊14C2, (C5×C41D4).4C2, C2.12(C2×D4.D5), (C2×C10).524(C2×D4), (C2×C4).186(C5⋊D4), (C2×C4).491(C22×D5), C22.197(C2×C5⋊D4), (C2×C52C8).132C22, SmallGroup(320,702)

Series: Derived Chief Lower central Upper central

C1C2×C20 — Dic109D4
C1C5C10C20C2×C20C2×Dic10C4×Dic10 — Dic109D4
C5C10C2×C20 — Dic109D4
C1C22C42C41D4

Generators and relations for Dic109D4
 G = < a,b,c,d | a20=c4=d2=1, b2=a10, bab-1=a-1, ac=ca, dad=a11, bc=cb, dbd=a5b, dcd=c-1 >

Subgroups: 438 in 128 conjugacy classes, 45 normal (29 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, C23, C10, C10, C42, C42, C4⋊C4, C2×C8, SD16, C2×D4, C2×D4, C2×Q8, Dic5, C20, C20, C20, C2×C10, C2×C10, D4⋊C4, C4⋊C8, C4×Q8, C41D4, C2×SD16, C52C8, Dic10, Dic10, C2×Dic5, C2×C20, C5×D4, C22×C10, C4⋊SD16, C2×C52C8, C4×Dic5, C10.D4, C4⋊Dic5, D4.D5, C4×C20, C2×Dic10, D4×C10, D4×C10, C203C8, D4⋊Dic5, C4×Dic10, C2×D4.D5, C5×C41D4, Dic109D4
Quotients: C1, C2, C22, D4, C23, D5, SD16, C2×D4, C4○D4, D10, C4⋊D4, C2×SD16, C8⋊C22, C5⋊D4, C22×D5, C4⋊SD16, D4.D5, D4×D5, D42D5, C2×C5⋊D4, D4.D10, C2×D4.D5, C202D4, Dic109D4

Smallest permutation representation of Dic109D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 61 11 71)(2 80 12 70)(3 79 13 69)(4 78 14 68)(5 77 15 67)(6 76 16 66)(7 75 17 65)(8 74 18 64)(9 73 19 63)(10 72 20 62)(21 58 31 48)(22 57 32 47)(23 56 33 46)(24 55 34 45)(25 54 35 44)(26 53 36 43)(27 52 37 42)(28 51 38 41)(29 50 39 60)(30 49 40 59)(81 145 91 155)(82 144 92 154)(83 143 93 153)(84 142 94 152)(85 141 95 151)(86 160 96 150)(87 159 97 149)(88 158 98 148)(89 157 99 147)(90 156 100 146)(101 121 111 131)(102 140 112 130)(103 139 113 129)(104 138 114 128)(105 137 115 127)(106 136 116 126)(107 135 117 125)(108 134 118 124)(109 133 119 123)(110 132 120 122)
(1 32 103 151)(2 33 104 152)(3 34 105 153)(4 35 106 154)(5 36 107 155)(6 37 108 156)(7 38 109 157)(8 39 110 158)(9 40 111 159)(10 21 112 160)(11 22 113 141)(12 23 114 142)(13 24 115 143)(14 25 116 144)(15 26 117 145)(16 27 118 146)(17 28 119 147)(18 29 120 148)(19 30 101 149)(20 31 102 150)(41 133 99 75)(42 134 100 76)(43 135 81 77)(44 136 82 78)(45 137 83 79)(46 138 84 80)(47 139 85 61)(48 140 86 62)(49 121 87 63)(50 122 88 64)(51 123 89 65)(52 124 90 66)(53 125 91 67)(54 126 92 68)(55 127 93 69)(56 128 94 70)(57 129 95 71)(58 130 96 72)(59 131 97 73)(60 132 98 74)
(2 12)(4 14)(6 16)(8 18)(10 20)(21 150)(22 141)(23 152)(24 143)(25 154)(26 145)(27 156)(28 147)(29 158)(30 149)(31 160)(32 151)(33 142)(34 153)(35 144)(36 155)(37 146)(38 157)(39 148)(40 159)(41 94)(42 85)(43 96)(44 87)(45 98)(46 89)(47 100)(48 91)(49 82)(50 93)(51 84)(52 95)(53 86)(54 97)(55 88)(56 99)(57 90)(58 81)(59 92)(60 83)(61 76)(62 67)(63 78)(64 69)(65 80)(66 71)(68 73)(70 75)(72 77)(74 79)(102 112)(104 114)(106 116)(108 118)(110 120)(121 136)(122 127)(123 138)(124 129)(125 140)(126 131)(128 133)(130 135)(132 137)(134 139)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,61,11,71)(2,80,12,70)(3,79,13,69)(4,78,14,68)(5,77,15,67)(6,76,16,66)(7,75,17,65)(8,74,18,64)(9,73,19,63)(10,72,20,62)(21,58,31,48)(22,57,32,47)(23,56,33,46)(24,55,34,45)(25,54,35,44)(26,53,36,43)(27,52,37,42)(28,51,38,41)(29,50,39,60)(30,49,40,59)(81,145,91,155)(82,144,92,154)(83,143,93,153)(84,142,94,152)(85,141,95,151)(86,160,96,150)(87,159,97,149)(88,158,98,148)(89,157,99,147)(90,156,100,146)(101,121,111,131)(102,140,112,130)(103,139,113,129)(104,138,114,128)(105,137,115,127)(106,136,116,126)(107,135,117,125)(108,134,118,124)(109,133,119,123)(110,132,120,122), (1,32,103,151)(2,33,104,152)(3,34,105,153)(4,35,106,154)(5,36,107,155)(6,37,108,156)(7,38,109,157)(8,39,110,158)(9,40,111,159)(10,21,112,160)(11,22,113,141)(12,23,114,142)(13,24,115,143)(14,25,116,144)(15,26,117,145)(16,27,118,146)(17,28,119,147)(18,29,120,148)(19,30,101,149)(20,31,102,150)(41,133,99,75)(42,134,100,76)(43,135,81,77)(44,136,82,78)(45,137,83,79)(46,138,84,80)(47,139,85,61)(48,140,86,62)(49,121,87,63)(50,122,88,64)(51,123,89,65)(52,124,90,66)(53,125,91,67)(54,126,92,68)(55,127,93,69)(56,128,94,70)(57,129,95,71)(58,130,96,72)(59,131,97,73)(60,132,98,74), (2,12)(4,14)(6,16)(8,18)(10,20)(21,150)(22,141)(23,152)(24,143)(25,154)(26,145)(27,156)(28,147)(29,158)(30,149)(31,160)(32,151)(33,142)(34,153)(35,144)(36,155)(37,146)(38,157)(39,148)(40,159)(41,94)(42,85)(43,96)(44,87)(45,98)(46,89)(47,100)(48,91)(49,82)(50,93)(51,84)(52,95)(53,86)(54,97)(55,88)(56,99)(57,90)(58,81)(59,92)(60,83)(61,76)(62,67)(63,78)(64,69)(65,80)(66,71)(68,73)(70,75)(72,77)(74,79)(102,112)(104,114)(106,116)(108,118)(110,120)(121,136)(122,127)(123,138)(124,129)(125,140)(126,131)(128,133)(130,135)(132,137)(134,139)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,61,11,71)(2,80,12,70)(3,79,13,69)(4,78,14,68)(5,77,15,67)(6,76,16,66)(7,75,17,65)(8,74,18,64)(9,73,19,63)(10,72,20,62)(21,58,31,48)(22,57,32,47)(23,56,33,46)(24,55,34,45)(25,54,35,44)(26,53,36,43)(27,52,37,42)(28,51,38,41)(29,50,39,60)(30,49,40,59)(81,145,91,155)(82,144,92,154)(83,143,93,153)(84,142,94,152)(85,141,95,151)(86,160,96,150)(87,159,97,149)(88,158,98,148)(89,157,99,147)(90,156,100,146)(101,121,111,131)(102,140,112,130)(103,139,113,129)(104,138,114,128)(105,137,115,127)(106,136,116,126)(107,135,117,125)(108,134,118,124)(109,133,119,123)(110,132,120,122), (1,32,103,151)(2,33,104,152)(3,34,105,153)(4,35,106,154)(5,36,107,155)(6,37,108,156)(7,38,109,157)(8,39,110,158)(9,40,111,159)(10,21,112,160)(11,22,113,141)(12,23,114,142)(13,24,115,143)(14,25,116,144)(15,26,117,145)(16,27,118,146)(17,28,119,147)(18,29,120,148)(19,30,101,149)(20,31,102,150)(41,133,99,75)(42,134,100,76)(43,135,81,77)(44,136,82,78)(45,137,83,79)(46,138,84,80)(47,139,85,61)(48,140,86,62)(49,121,87,63)(50,122,88,64)(51,123,89,65)(52,124,90,66)(53,125,91,67)(54,126,92,68)(55,127,93,69)(56,128,94,70)(57,129,95,71)(58,130,96,72)(59,131,97,73)(60,132,98,74), (2,12)(4,14)(6,16)(8,18)(10,20)(21,150)(22,141)(23,152)(24,143)(25,154)(26,145)(27,156)(28,147)(29,158)(30,149)(31,160)(32,151)(33,142)(34,153)(35,144)(36,155)(37,146)(38,157)(39,148)(40,159)(41,94)(42,85)(43,96)(44,87)(45,98)(46,89)(47,100)(48,91)(49,82)(50,93)(51,84)(52,95)(53,86)(54,97)(55,88)(56,99)(57,90)(58,81)(59,92)(60,83)(61,76)(62,67)(63,78)(64,69)(65,80)(66,71)(68,73)(70,75)(72,77)(74,79)(102,112)(104,114)(106,116)(108,118)(110,120)(121,136)(122,127)(123,138)(124,129)(125,140)(126,131)(128,133)(130,135)(132,137)(134,139) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,61,11,71),(2,80,12,70),(3,79,13,69),(4,78,14,68),(5,77,15,67),(6,76,16,66),(7,75,17,65),(8,74,18,64),(9,73,19,63),(10,72,20,62),(21,58,31,48),(22,57,32,47),(23,56,33,46),(24,55,34,45),(25,54,35,44),(26,53,36,43),(27,52,37,42),(28,51,38,41),(29,50,39,60),(30,49,40,59),(81,145,91,155),(82,144,92,154),(83,143,93,153),(84,142,94,152),(85,141,95,151),(86,160,96,150),(87,159,97,149),(88,158,98,148),(89,157,99,147),(90,156,100,146),(101,121,111,131),(102,140,112,130),(103,139,113,129),(104,138,114,128),(105,137,115,127),(106,136,116,126),(107,135,117,125),(108,134,118,124),(109,133,119,123),(110,132,120,122)], [(1,32,103,151),(2,33,104,152),(3,34,105,153),(4,35,106,154),(5,36,107,155),(6,37,108,156),(7,38,109,157),(8,39,110,158),(9,40,111,159),(10,21,112,160),(11,22,113,141),(12,23,114,142),(13,24,115,143),(14,25,116,144),(15,26,117,145),(16,27,118,146),(17,28,119,147),(18,29,120,148),(19,30,101,149),(20,31,102,150),(41,133,99,75),(42,134,100,76),(43,135,81,77),(44,136,82,78),(45,137,83,79),(46,138,84,80),(47,139,85,61),(48,140,86,62),(49,121,87,63),(50,122,88,64),(51,123,89,65),(52,124,90,66),(53,125,91,67),(54,126,92,68),(55,127,93,69),(56,128,94,70),(57,129,95,71),(58,130,96,72),(59,131,97,73),(60,132,98,74)], [(2,12),(4,14),(6,16),(8,18),(10,20),(21,150),(22,141),(23,152),(24,143),(25,154),(26,145),(27,156),(28,147),(29,158),(30,149),(31,160),(32,151),(33,142),(34,153),(35,144),(36,155),(37,146),(38,157),(39,148),(40,159),(41,94),(42,85),(43,96),(44,87),(45,98),(46,89),(47,100),(48,91),(49,82),(50,93),(51,84),(52,95),(53,86),(54,97),(55,88),(56,99),(57,90),(58,81),(59,92),(60,83),(61,76),(62,67),(63,78),(64,69),(65,80),(66,71),(68,73),(70,75),(72,77),(74,79),(102,112),(104,114),(106,116),(108,118),(110,120),(121,136),(122,127),(123,138),(124,129),(125,140),(126,131),(128,133),(130,135),(132,137),(134,139)]])

47 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I5A5B8A8B8C8D10A···10F10G···10N20A···20L
order12222244444444455888810···1010···1020···20
size111188222242020202022202020202···28···84···4

47 irreducible representations

dim1111112222222244444
type++++++++++++-+-
imageC1C2C2C2C2C2D4D4D5SD16C4○D4D10D10C5⋊D4C8⋊C22D4.D5D4×D5D42D5D4.D10
kernelDic109D4C203C8D4⋊Dic5C4×Dic10C2×D4.D5C5×C41D4Dic10C2×C20C41D4C20C20C42C2×D4C2×C4C10C4C4C4C2
# reps1121212224224814224

Matrix representation of Dic109D4 in GL6(𝔽41)

1370000
21400000
0031000
009400
000010
000001
,
0220000
1300000
00192500
0022200
0000400
0000040
,
4000000
0400000
0040000
0004000
00001618
00002925
,
100000
21400000
001000
00284000
000010
00002140

G:=sub<GL(6,GF(41))| [1,21,0,0,0,0,37,40,0,0,0,0,0,0,31,9,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,13,0,0,0,0,22,0,0,0,0,0,0,0,19,2,0,0,0,0,25,22,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,16,29,0,0,0,0,18,25],[1,21,0,0,0,0,0,40,0,0,0,0,0,0,1,28,0,0,0,0,0,40,0,0,0,0,0,0,1,21,0,0,0,0,0,40] >;

Dic109D4 in GAP, Magma, Sage, TeX

{\rm Dic}_{10}\rtimes_9D_4
% in TeX

G:=Group("Dic10:9D4");
// GroupNames label

G:=SmallGroup(320,702);
// by ID

G=gap.SmallGroup(320,702);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,120,254,219,1123,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=c^4=d^2=1,b^2=a^10,b*a*b^-1=a^-1,a*c=c*a,d*a*d=a^11,b*c=c*b,d*b*d=a^5*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽