Extensions 1→N→G→Q→1 with N=C2xQ16 and Q=C10

Direct product G=NxQ with N=C2xQ16 and Q=C10
dρLabelID
Q16xC2xC10320Q16xC2xC10320,1573

Semidirect products G=N:Q with N=C2xQ16 and Q=C10
extensionφ:Q→Out NdρLabelID
(C2xQ16):1C10 = C5xC22:Q16φ: C10/C5C2 ⊆ Out C2xQ16160(C2xQ16):1C10320,952
(C2xQ16):2C10 = C5xD4.7D4φ: C10/C5C2 ⊆ Out C2xQ16160(C2xQ16):2C10320,953
(C2xQ16):3C10 = C5xQ8.D4φ: C10/C5C2 ⊆ Out C2xQ16160(C2xQ16):3C10320,965
(C2xQ16):4C10 = C5xC8.18D4φ: C10/C5C2 ⊆ Out C2xQ16160(C2xQ16):4C10320,968
(C2xQ16):5C10 = C5xC8.12D4φ: C10/C5C2 ⊆ Out C2xQ16160(C2xQ16):5C10320,996
(C2xQ16):6C10 = C10xSD32φ: C10/C5C2 ⊆ Out C2xQ16160(C2xQ16):6C10320,1007
(C2xQ16):7C10 = C5xC8.D4φ: C10/C5C2 ⊆ Out C2xQ16160(C2xQ16):7C10320,971
(C2xQ16):8C10 = C5xD4.5D4φ: C10/C5C2 ⊆ Out C2xQ161604(C2xQ16):8C10320,974
(C2xQ16):9C10 = C5xC8.2D4φ: C10/C5C2 ⊆ Out C2xQ16160(C2xQ16):9C10320,998
(C2xQ16):10C10 = C5xQ32:C2φ: C10/C5C2 ⊆ Out C2xQ161604(C2xQ16):10C10320,1011
(C2xQ16):11C10 = C10xC8.C22φ: C10/C5C2 ⊆ Out C2xQ16160(C2xQ16):11C10320,1576
(C2xQ16):12C10 = C5xQ8oD8φ: C10/C5C2 ⊆ Out C2xQ161604(C2xQ16):12C10320,1580
(C2xQ16):13C10 = C10xC4oD8φ: trivial image160(C2xQ16):13C10320,1574

Non-split extensions G=N.Q with N=C2xQ16 and Q=C10
extensionφ:Q→Out NdρLabelID
(C2xQ16).1C10 = C5xC2.Q32φ: C10/C5C2 ⊆ Out C2xQ16320(C2xQ16).1C10320,163
(C2xQ16).2C10 = C5xC4:2Q16φ: C10/C5C2 ⊆ Out C2xQ16320(C2xQ16).2C10320,963
(C2xQ16).3C10 = C5xC4:Q16φ: C10/C5C2 ⊆ Out C2xQ16320(C2xQ16).3C10320,995
(C2xQ16).4C10 = C10xQ32φ: C10/C5C2 ⊆ Out C2xQ16320(C2xQ16).4C10320,1008
(C2xQ16).5C10 = C5xC8.17D4φ: C10/C5C2 ⊆ Out C2xQ161604(C2xQ16).5C10320,167
(C2xQ16).6C10 = C5xQ16:C4φ: C10/C5C2 ⊆ Out C2xQ16320(C2xQ16).6C10320,942
(C2xQ16).7C10 = Q16xC20φ: trivial image320(C2xQ16).7C10320,940

׿
x
:
Z
F
o
wr
Q
<