Copied to
clipboard

G = C5×C8.D4order 320 = 26·5

Direct product of C5 and C8.D4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C5×C8.D4, C40.51D4, C8.1(C5×D4), C4.Q85C10, (C2×Q16)⋊7C10, C4.62(D4×C10), (C10×Q16)⋊21C2, (C2×C20).329D4, C20.469(C2×D4), C23.17(C5×D4), C22⋊Q8.4C10, Q8⋊C418C10, (C22×C10).35D4, C22.94(D4×C10), C20.267(C4○D4), (C2×C40).334C22, (C2×C20).929C23, (C2×M4(2)).3C10, (C10×M4(2)).8C2, C10.153(C4⋊D4), (Q8×C10).166C22, C10.138(C8.C22), (C22×C20).427C22, (C5×C4.Q8)⋊14C2, C4.12(C5×C4○D4), (C2×C4).34(C5×D4), C4⋊C4.10(C2×C10), (C2×C8).23(C2×C10), C2.22(C5×C4⋊D4), (C5×Q8⋊C4)⋊41C2, (C2×C10).650(C2×D4), (C2×Q8).10(C2×C10), C2.13(C5×C8.C22), (C5×C22⋊Q8).14C2, (C5×C4⋊C4).232C22, (C22×C4).45(C2×C10), (C2×C4).104(C22×C10), SmallGroup(320,971)

Series: Derived Chief Lower central Upper central

C1C2×C4 — C5×C8.D4
C1C2C22C2×C4C2×C20Q8×C10C10×Q16 — C5×C8.D4
C1C2C2×C4 — C5×C8.D4
C1C2×C10C22×C20 — C5×C8.D4

Generators and relations for C5×C8.D4
 G = < a,b,c,d | a5=b8=c4=1, d2=b4, ab=ba, ac=ca, ad=da, cbc-1=b3, dbd-1=b-1, dcd-1=b4c-1 >

Subgroups: 186 in 110 conjugacy classes, 54 normal (30 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, Q8, C23, C10, C10, C10, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, M4(2), Q16, C22×C4, C2×Q8, C20, C20, C2×C10, C2×C10, Q8⋊C4, C4.Q8, C22⋊Q8, C2×M4(2), C2×Q16, C40, C40, C2×C20, C2×C20, C5×Q8, C22×C10, C8.D4, C5×C22⋊C4, C5×C4⋊C4, C5×C4⋊C4, C2×C40, C5×M4(2), C5×Q16, C22×C20, Q8×C10, C5×Q8⋊C4, C5×C4.Q8, C5×C22⋊Q8, C10×M4(2), C10×Q16, C5×C8.D4
Quotients: C1, C2, C22, C5, D4, C23, C10, C2×D4, C4○D4, C2×C10, C4⋊D4, C8.C22, C5×D4, C22×C10, C8.D4, D4×C10, C5×C4○D4, C5×C4⋊D4, C5×C8.C22, C5×C8.D4

Smallest permutation representation of C5×C8.D4
On 160 points
Generators in S160
(1 16 49 57 17)(2 9 50 58 18)(3 10 51 59 19)(4 11 52 60 20)(5 12 53 61 21)(6 13 54 62 22)(7 14 55 63 23)(8 15 56 64 24)(25 85 73 33 65)(26 86 74 34 66)(27 87 75 35 67)(28 88 76 36 68)(29 81 77 37 69)(30 82 78 38 70)(31 83 79 39 71)(32 84 80 40 72)(41 156 120 148 112)(42 157 113 149 105)(43 158 114 150 106)(44 159 115 151 107)(45 160 116 152 108)(46 153 117 145 109)(47 154 118 146 110)(48 155 119 147 111)(89 126 141 97 133)(90 127 142 98 134)(91 128 143 99 135)(92 121 144 100 136)(93 122 137 101 129)(94 123 138 102 130)(95 124 139 103 131)(96 125 140 104 132)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
(1 109 31 89)(2 112 32 92)(3 107 25 95)(4 110 26 90)(5 105 27 93)(6 108 28 96)(7 111 29 91)(8 106 30 94)(9 41 84 121)(10 44 85 124)(11 47 86 127)(12 42 87 122)(13 45 88 125)(14 48 81 128)(15 43 82 123)(16 46 83 126)(17 145 71 133)(18 148 72 136)(19 151 65 131)(20 146 66 134)(21 149 67 129)(22 152 68 132)(23 147 69 135)(24 150 70 130)(33 103 59 115)(34 98 60 118)(35 101 61 113)(36 104 62 116)(37 99 63 119)(38 102 64 114)(39 97 57 117)(40 100 58 120)(49 153 79 141)(50 156 80 144)(51 159 73 139)(52 154 74 142)(53 157 75 137)(54 160 76 140)(55 155 77 143)(56 158 78 138)
(1 93 5 89)(2 92 6 96)(3 91 7 95)(4 90 8 94)(9 121 13 125)(10 128 14 124)(11 127 15 123)(12 126 16 122)(17 129 21 133)(18 136 22 132)(19 135 23 131)(20 134 24 130)(25 111 29 107)(26 110 30 106)(27 109 31 105)(28 108 32 112)(33 119 37 115)(34 118 38 114)(35 117 39 113)(36 116 40 120)(41 88 45 84)(42 87 46 83)(43 86 47 82)(44 85 48 81)(49 137 53 141)(50 144 54 140)(51 143 55 139)(52 142 56 138)(57 101 61 97)(58 100 62 104)(59 99 63 103)(60 98 64 102)(65 147 69 151)(66 146 70 150)(67 145 71 149)(68 152 72 148)(73 155 77 159)(74 154 78 158)(75 153 79 157)(76 160 80 156)

G:=sub<Sym(160)| (1,16,49,57,17)(2,9,50,58,18)(3,10,51,59,19)(4,11,52,60,20)(5,12,53,61,21)(6,13,54,62,22)(7,14,55,63,23)(8,15,56,64,24)(25,85,73,33,65)(26,86,74,34,66)(27,87,75,35,67)(28,88,76,36,68)(29,81,77,37,69)(30,82,78,38,70)(31,83,79,39,71)(32,84,80,40,72)(41,156,120,148,112)(42,157,113,149,105)(43,158,114,150,106)(44,159,115,151,107)(45,160,116,152,108)(46,153,117,145,109)(47,154,118,146,110)(48,155,119,147,111)(89,126,141,97,133)(90,127,142,98,134)(91,128,143,99,135)(92,121,144,100,136)(93,122,137,101,129)(94,123,138,102,130)(95,124,139,103,131)(96,125,140,104,132), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,109,31,89)(2,112,32,92)(3,107,25,95)(4,110,26,90)(5,105,27,93)(6,108,28,96)(7,111,29,91)(8,106,30,94)(9,41,84,121)(10,44,85,124)(11,47,86,127)(12,42,87,122)(13,45,88,125)(14,48,81,128)(15,43,82,123)(16,46,83,126)(17,145,71,133)(18,148,72,136)(19,151,65,131)(20,146,66,134)(21,149,67,129)(22,152,68,132)(23,147,69,135)(24,150,70,130)(33,103,59,115)(34,98,60,118)(35,101,61,113)(36,104,62,116)(37,99,63,119)(38,102,64,114)(39,97,57,117)(40,100,58,120)(49,153,79,141)(50,156,80,144)(51,159,73,139)(52,154,74,142)(53,157,75,137)(54,160,76,140)(55,155,77,143)(56,158,78,138), (1,93,5,89)(2,92,6,96)(3,91,7,95)(4,90,8,94)(9,121,13,125)(10,128,14,124)(11,127,15,123)(12,126,16,122)(17,129,21,133)(18,136,22,132)(19,135,23,131)(20,134,24,130)(25,111,29,107)(26,110,30,106)(27,109,31,105)(28,108,32,112)(33,119,37,115)(34,118,38,114)(35,117,39,113)(36,116,40,120)(41,88,45,84)(42,87,46,83)(43,86,47,82)(44,85,48,81)(49,137,53,141)(50,144,54,140)(51,143,55,139)(52,142,56,138)(57,101,61,97)(58,100,62,104)(59,99,63,103)(60,98,64,102)(65,147,69,151)(66,146,70,150)(67,145,71,149)(68,152,72,148)(73,155,77,159)(74,154,78,158)(75,153,79,157)(76,160,80,156)>;

G:=Group( (1,16,49,57,17)(2,9,50,58,18)(3,10,51,59,19)(4,11,52,60,20)(5,12,53,61,21)(6,13,54,62,22)(7,14,55,63,23)(8,15,56,64,24)(25,85,73,33,65)(26,86,74,34,66)(27,87,75,35,67)(28,88,76,36,68)(29,81,77,37,69)(30,82,78,38,70)(31,83,79,39,71)(32,84,80,40,72)(41,156,120,148,112)(42,157,113,149,105)(43,158,114,150,106)(44,159,115,151,107)(45,160,116,152,108)(46,153,117,145,109)(47,154,118,146,110)(48,155,119,147,111)(89,126,141,97,133)(90,127,142,98,134)(91,128,143,99,135)(92,121,144,100,136)(93,122,137,101,129)(94,123,138,102,130)(95,124,139,103,131)(96,125,140,104,132), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,109,31,89)(2,112,32,92)(3,107,25,95)(4,110,26,90)(5,105,27,93)(6,108,28,96)(7,111,29,91)(8,106,30,94)(9,41,84,121)(10,44,85,124)(11,47,86,127)(12,42,87,122)(13,45,88,125)(14,48,81,128)(15,43,82,123)(16,46,83,126)(17,145,71,133)(18,148,72,136)(19,151,65,131)(20,146,66,134)(21,149,67,129)(22,152,68,132)(23,147,69,135)(24,150,70,130)(33,103,59,115)(34,98,60,118)(35,101,61,113)(36,104,62,116)(37,99,63,119)(38,102,64,114)(39,97,57,117)(40,100,58,120)(49,153,79,141)(50,156,80,144)(51,159,73,139)(52,154,74,142)(53,157,75,137)(54,160,76,140)(55,155,77,143)(56,158,78,138), (1,93,5,89)(2,92,6,96)(3,91,7,95)(4,90,8,94)(9,121,13,125)(10,128,14,124)(11,127,15,123)(12,126,16,122)(17,129,21,133)(18,136,22,132)(19,135,23,131)(20,134,24,130)(25,111,29,107)(26,110,30,106)(27,109,31,105)(28,108,32,112)(33,119,37,115)(34,118,38,114)(35,117,39,113)(36,116,40,120)(41,88,45,84)(42,87,46,83)(43,86,47,82)(44,85,48,81)(49,137,53,141)(50,144,54,140)(51,143,55,139)(52,142,56,138)(57,101,61,97)(58,100,62,104)(59,99,63,103)(60,98,64,102)(65,147,69,151)(66,146,70,150)(67,145,71,149)(68,152,72,148)(73,155,77,159)(74,154,78,158)(75,153,79,157)(76,160,80,156) );

G=PermutationGroup([[(1,16,49,57,17),(2,9,50,58,18),(3,10,51,59,19),(4,11,52,60,20),(5,12,53,61,21),(6,13,54,62,22),(7,14,55,63,23),(8,15,56,64,24),(25,85,73,33,65),(26,86,74,34,66),(27,87,75,35,67),(28,88,76,36,68),(29,81,77,37,69),(30,82,78,38,70),(31,83,79,39,71),(32,84,80,40,72),(41,156,120,148,112),(42,157,113,149,105),(43,158,114,150,106),(44,159,115,151,107),(45,160,116,152,108),(46,153,117,145,109),(47,154,118,146,110),(48,155,119,147,111),(89,126,141,97,133),(90,127,142,98,134),(91,128,143,99,135),(92,121,144,100,136),(93,122,137,101,129),(94,123,138,102,130),(95,124,139,103,131),(96,125,140,104,132)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)], [(1,109,31,89),(2,112,32,92),(3,107,25,95),(4,110,26,90),(5,105,27,93),(6,108,28,96),(7,111,29,91),(8,106,30,94),(9,41,84,121),(10,44,85,124),(11,47,86,127),(12,42,87,122),(13,45,88,125),(14,48,81,128),(15,43,82,123),(16,46,83,126),(17,145,71,133),(18,148,72,136),(19,151,65,131),(20,146,66,134),(21,149,67,129),(22,152,68,132),(23,147,69,135),(24,150,70,130),(33,103,59,115),(34,98,60,118),(35,101,61,113),(36,104,62,116),(37,99,63,119),(38,102,64,114),(39,97,57,117),(40,100,58,120),(49,153,79,141),(50,156,80,144),(51,159,73,139),(52,154,74,142),(53,157,75,137),(54,160,76,140),(55,155,77,143),(56,158,78,138)], [(1,93,5,89),(2,92,6,96),(3,91,7,95),(4,90,8,94),(9,121,13,125),(10,128,14,124),(11,127,15,123),(12,126,16,122),(17,129,21,133),(18,136,22,132),(19,135,23,131),(20,134,24,130),(25,111,29,107),(26,110,30,106),(27,109,31,105),(28,108,32,112),(33,119,37,115),(34,118,38,114),(35,117,39,113),(36,116,40,120),(41,88,45,84),(42,87,46,83),(43,86,47,82),(44,85,48,81),(49,137,53,141),(50,144,54,140),(51,143,55,139),(52,142,56,138),(57,101,61,97),(58,100,62,104),(59,99,63,103),(60,98,64,102),(65,147,69,151),(66,146,70,150),(67,145,71,149),(68,152,72,148),(73,155,77,159),(74,154,78,158),(75,153,79,157),(76,160,80,156)]])

80 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G5A5B5C5D8A8B8C8D10A···10L10M10N10O10P20A···20H20I20J20K20L20M···20AB40A···40P
order1222244444445555888810···101010101020···202020202020···2040···40
size111142248888111144441···144442···244448···84···4

80 irreducible representations

dim1111111111112222222244
type+++++++++-
imageC1C2C2C2C2C2C5C10C10C10C10C10D4D4D4C4○D4C5×D4C5×D4C5×D4C5×C4○D4C8.C22C5×C8.C22
kernelC5×C8.D4C5×Q8⋊C4C5×C4.Q8C5×C22⋊Q8C10×M4(2)C10×Q16C8.D4Q8⋊C4C4.Q8C22⋊Q8C2×M4(2)C2×Q16C40C2×C20C22×C10C20C8C2×C4C23C4C10C2
# reps1212114848442112844828

Matrix representation of C5×C8.D4 in GL8(𝔽41)

370000000
037000000
00100000
00010000
00001000
00000100
00000010
00000001
,
92000000
032000000
00100000
00010000
000003710
000001039
000094033
0000175040
,
400000000
91000000
0040390000
00110000
000033300
000033800
0000943113
0000378810
,
10000000
3240000000
0040390000
00010000
000033300
000033800
00009191028
00003703331

G:=sub<GL(8,GF(41))| [37,0,0,0,0,0,0,0,0,37,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[9,0,0,0,0,0,0,0,2,32,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,9,17,0,0,0,0,37,1,4,5,0,0,0,0,1,0,0,0,0,0,0,0,0,39,33,40],[40,9,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,1,0,0,0,0,0,0,39,1,0,0,0,0,0,0,0,0,33,33,9,37,0,0,0,0,3,8,4,8,0,0,0,0,0,0,31,8,0,0,0,0,0,0,13,10],[1,32,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,39,1,0,0,0,0,0,0,0,0,33,33,9,37,0,0,0,0,3,8,19,0,0,0,0,0,0,0,10,33,0,0,0,0,0,0,28,31] >;

C5×C8.D4 in GAP, Magma, Sage, TeX

C_5\times C_8.D_4
% in TeX

G:=Group("C5xC8.D4");
// GroupNames label

G:=SmallGroup(320,971);
// by ID

G=gap.SmallGroup(320,971);
# by ID

G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-2,1120,589,1408,1766,1731,7004,172]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^8=c^4=1,d^2=b^4,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^3,d*b*d^-1=b^-1,d*c*d^-1=b^4*c^-1>;
// generators/relations

׿
×
𝔽