direct product, metabelian, nilpotent (class 3), monomial, 2-elementary
Aliases: C5×D4.7D4, D4.7(C5×D4), Q8.7(C5×D4), C22⋊C8⋊6C10, (C2×Q16)⋊2C10, (C5×D4).41D4, C4.26(D4×C10), C22⋊Q8⋊2C10, (C5×Q8).41D4, D4⋊C4⋊5C10, (C10×Q16)⋊16C2, C20.387(C2×D4), (C2×C20).460D4, C23.14(C5×D4), Q8⋊C4⋊10C10, C10.99C22≀C2, (C2×SD16)⋊10C10, (C10×SD16)⋊27C2, C22.82(D4×C10), (C22×C10).32D4, C10.120(C4○D8), (C2×C40).255C22, (C2×C20).917C23, (D4×C10).296C22, (Q8×C10).261C22, C10.133(C8.C22), (C22×C20).424C22, C2.7(C5×C4○D8), C4⋊C4.4(C2×C10), (C5×C22⋊C8)⋊23C2, (C2×C8).35(C2×C10), (C2×C4○D4).8C10, (C2×C4).106(C5×D4), (C5×C22⋊Q8)⋊29C2, (C5×D4⋊C4)⋊28C2, C2.8(C5×C8.C22), (C5×Q8⋊C4)⋊32C2, C2.13(C5×C22≀C2), (C10×C4○D4).22C2, (C2×D4).54(C2×C10), (C2×C10).638(C2×D4), (C2×Q8).46(C2×C10), (C5×C4⋊C4).226C22, (C22×C4).42(C2×C10), (C2×C4).92(C22×C10), SmallGroup(320,953)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C5×D4.7D4
G = < a,b,c,d,e | a5=b4=c2=d4=1, e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=dbd-1=ebe-1=b-1, dcd-1=ece-1=bc, ede-1=d-1 >
Subgroups: 274 in 152 conjugacy classes, 58 normal (50 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C10, C10, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C20, C20, C2×C10, C2×C10, C22⋊C8, D4⋊C4, Q8⋊C4, C22⋊Q8, C2×SD16, C2×Q16, C2×C4○D4, C40, C2×C20, C2×C20, C5×D4, C5×D4, C5×Q8, C5×Q8, C22×C10, C22×C10, D4.7D4, C5×C22⋊C4, C5×C4⋊C4, C5×C4⋊C4, C2×C40, C5×SD16, C5×Q16, C22×C20, C22×C20, D4×C10, D4×C10, Q8×C10, C5×C4○D4, C5×C22⋊C8, C5×D4⋊C4, C5×Q8⋊C4, C5×C22⋊Q8, C10×SD16, C10×Q16, C10×C4○D4, C5×D4.7D4
Quotients: C1, C2, C22, C5, D4, C23, C10, C2×D4, C2×C10, C22≀C2, C4○D8, C8.C22, C5×D4, C22×C10, D4.7D4, D4×C10, C5×C22≀C2, C5×C4○D8, C5×C8.C22, C5×D4.7D4
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 54 12 45)(2 55 13 41)(3 51 14 42)(4 52 15 43)(5 53 11 44)(6 19 144 140)(7 20 145 136)(8 16 141 137)(9 17 142 138)(10 18 143 139)(21 34 159 155)(22 35 160 151)(23 31 156 152)(24 32 157 153)(25 33 158 154)(26 69 50 40)(27 70 46 36)(28 66 47 37)(29 67 48 38)(30 68 49 39)(56 65 94 81)(57 61 95 82)(58 62 91 83)(59 63 92 84)(60 64 93 85)(71 80 90 109)(72 76 86 110)(73 77 87 106)(74 78 88 107)(75 79 89 108)(96 105 134 121)(97 101 135 122)(98 102 131 123)(99 103 132 124)(100 104 133 125)(111 120 130 149)(112 116 126 150)(113 117 127 146)(114 118 128 147)(115 119 129 148)
(1 87)(2 88)(3 89)(4 90)(5 86)(6 116)(7 117)(8 118)(9 119)(10 120)(11 72)(12 73)(13 74)(14 75)(15 71)(16 114)(17 115)(18 111)(19 112)(20 113)(21 102)(22 103)(23 104)(24 105)(25 101)(26 84)(27 85)(28 81)(29 82)(30 83)(31 100)(32 96)(33 97)(34 98)(35 99)(36 60)(37 56)(38 57)(39 58)(40 59)(41 107)(42 108)(43 109)(44 110)(45 106)(46 64)(47 65)(48 61)(49 62)(50 63)(51 79)(52 80)(53 76)(54 77)(55 78)(66 94)(67 95)(68 91)(69 92)(70 93)(121 157)(122 158)(123 159)(124 160)(125 156)(126 140)(127 136)(128 137)(129 138)(130 139)(131 155)(132 151)(133 152)(134 153)(135 154)(141 147)(142 148)(143 149)(144 150)(145 146)
(1 127 66 134)(2 128 67 135)(3 129 68 131)(4 130 69 132)(5 126 70 133)(6 60 23 72)(7 56 24 73)(8 57 25 74)(9 58 21 75)(10 59 22 71)(11 112 36 100)(12 113 37 96)(13 114 38 97)(14 115 39 98)(15 111 40 99)(16 82 33 107)(17 83 34 108)(18 84 35 109)(19 85 31 110)(20 81 32 106)(26 124 43 149)(27 125 44 150)(28 121 45 146)(29 122 41 147)(30 123 42 148)(46 104 53 116)(47 105 54 117)(48 101 55 118)(49 102 51 119)(50 103 52 120)(61 154 78 137)(62 155 79 138)(63 151 80 139)(64 152 76 140)(65 153 77 136)(86 144 93 156)(87 145 94 157)(88 141 95 158)(89 142 91 159)(90 143 92 160)
(1 105 12 121)(2 101 13 122)(3 102 14 123)(4 103 15 124)(5 104 11 125)(6 85 144 64)(7 81 145 65)(8 82 141 61)(9 83 142 62)(10 84 143 63)(16 95 137 57)(17 91 138 58)(18 92 139 59)(19 93 140 60)(20 94 136 56)(21 108 159 79)(22 109 160 80)(23 110 156 76)(24 106 157 77)(25 107 158 78)(26 130 50 111)(27 126 46 112)(28 127 47 113)(29 128 48 114)(30 129 49 115)(31 86 152 72)(32 87 153 73)(33 88 154 74)(34 89 155 75)(35 90 151 71)(36 150 70 116)(37 146 66 117)(38 147 67 118)(39 148 68 119)(40 149 69 120)(41 135 55 97)(42 131 51 98)(43 132 52 99)(44 133 53 100)(45 134 54 96)
G:=sub<Sym(160)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,54,12,45)(2,55,13,41)(3,51,14,42)(4,52,15,43)(5,53,11,44)(6,19,144,140)(7,20,145,136)(8,16,141,137)(9,17,142,138)(10,18,143,139)(21,34,159,155)(22,35,160,151)(23,31,156,152)(24,32,157,153)(25,33,158,154)(26,69,50,40)(27,70,46,36)(28,66,47,37)(29,67,48,38)(30,68,49,39)(56,65,94,81)(57,61,95,82)(58,62,91,83)(59,63,92,84)(60,64,93,85)(71,80,90,109)(72,76,86,110)(73,77,87,106)(74,78,88,107)(75,79,89,108)(96,105,134,121)(97,101,135,122)(98,102,131,123)(99,103,132,124)(100,104,133,125)(111,120,130,149)(112,116,126,150)(113,117,127,146)(114,118,128,147)(115,119,129,148), (1,87)(2,88)(3,89)(4,90)(5,86)(6,116)(7,117)(8,118)(9,119)(10,120)(11,72)(12,73)(13,74)(14,75)(15,71)(16,114)(17,115)(18,111)(19,112)(20,113)(21,102)(22,103)(23,104)(24,105)(25,101)(26,84)(27,85)(28,81)(29,82)(30,83)(31,100)(32,96)(33,97)(34,98)(35,99)(36,60)(37,56)(38,57)(39,58)(40,59)(41,107)(42,108)(43,109)(44,110)(45,106)(46,64)(47,65)(48,61)(49,62)(50,63)(51,79)(52,80)(53,76)(54,77)(55,78)(66,94)(67,95)(68,91)(69,92)(70,93)(121,157)(122,158)(123,159)(124,160)(125,156)(126,140)(127,136)(128,137)(129,138)(130,139)(131,155)(132,151)(133,152)(134,153)(135,154)(141,147)(142,148)(143,149)(144,150)(145,146), (1,127,66,134)(2,128,67,135)(3,129,68,131)(4,130,69,132)(5,126,70,133)(6,60,23,72)(7,56,24,73)(8,57,25,74)(9,58,21,75)(10,59,22,71)(11,112,36,100)(12,113,37,96)(13,114,38,97)(14,115,39,98)(15,111,40,99)(16,82,33,107)(17,83,34,108)(18,84,35,109)(19,85,31,110)(20,81,32,106)(26,124,43,149)(27,125,44,150)(28,121,45,146)(29,122,41,147)(30,123,42,148)(46,104,53,116)(47,105,54,117)(48,101,55,118)(49,102,51,119)(50,103,52,120)(61,154,78,137)(62,155,79,138)(63,151,80,139)(64,152,76,140)(65,153,77,136)(86,144,93,156)(87,145,94,157)(88,141,95,158)(89,142,91,159)(90,143,92,160), (1,105,12,121)(2,101,13,122)(3,102,14,123)(4,103,15,124)(5,104,11,125)(6,85,144,64)(7,81,145,65)(8,82,141,61)(9,83,142,62)(10,84,143,63)(16,95,137,57)(17,91,138,58)(18,92,139,59)(19,93,140,60)(20,94,136,56)(21,108,159,79)(22,109,160,80)(23,110,156,76)(24,106,157,77)(25,107,158,78)(26,130,50,111)(27,126,46,112)(28,127,47,113)(29,128,48,114)(30,129,49,115)(31,86,152,72)(32,87,153,73)(33,88,154,74)(34,89,155,75)(35,90,151,71)(36,150,70,116)(37,146,66,117)(38,147,67,118)(39,148,68,119)(40,149,69,120)(41,135,55,97)(42,131,51,98)(43,132,52,99)(44,133,53,100)(45,134,54,96)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,54,12,45)(2,55,13,41)(3,51,14,42)(4,52,15,43)(5,53,11,44)(6,19,144,140)(7,20,145,136)(8,16,141,137)(9,17,142,138)(10,18,143,139)(21,34,159,155)(22,35,160,151)(23,31,156,152)(24,32,157,153)(25,33,158,154)(26,69,50,40)(27,70,46,36)(28,66,47,37)(29,67,48,38)(30,68,49,39)(56,65,94,81)(57,61,95,82)(58,62,91,83)(59,63,92,84)(60,64,93,85)(71,80,90,109)(72,76,86,110)(73,77,87,106)(74,78,88,107)(75,79,89,108)(96,105,134,121)(97,101,135,122)(98,102,131,123)(99,103,132,124)(100,104,133,125)(111,120,130,149)(112,116,126,150)(113,117,127,146)(114,118,128,147)(115,119,129,148), (1,87)(2,88)(3,89)(4,90)(5,86)(6,116)(7,117)(8,118)(9,119)(10,120)(11,72)(12,73)(13,74)(14,75)(15,71)(16,114)(17,115)(18,111)(19,112)(20,113)(21,102)(22,103)(23,104)(24,105)(25,101)(26,84)(27,85)(28,81)(29,82)(30,83)(31,100)(32,96)(33,97)(34,98)(35,99)(36,60)(37,56)(38,57)(39,58)(40,59)(41,107)(42,108)(43,109)(44,110)(45,106)(46,64)(47,65)(48,61)(49,62)(50,63)(51,79)(52,80)(53,76)(54,77)(55,78)(66,94)(67,95)(68,91)(69,92)(70,93)(121,157)(122,158)(123,159)(124,160)(125,156)(126,140)(127,136)(128,137)(129,138)(130,139)(131,155)(132,151)(133,152)(134,153)(135,154)(141,147)(142,148)(143,149)(144,150)(145,146), (1,127,66,134)(2,128,67,135)(3,129,68,131)(4,130,69,132)(5,126,70,133)(6,60,23,72)(7,56,24,73)(8,57,25,74)(9,58,21,75)(10,59,22,71)(11,112,36,100)(12,113,37,96)(13,114,38,97)(14,115,39,98)(15,111,40,99)(16,82,33,107)(17,83,34,108)(18,84,35,109)(19,85,31,110)(20,81,32,106)(26,124,43,149)(27,125,44,150)(28,121,45,146)(29,122,41,147)(30,123,42,148)(46,104,53,116)(47,105,54,117)(48,101,55,118)(49,102,51,119)(50,103,52,120)(61,154,78,137)(62,155,79,138)(63,151,80,139)(64,152,76,140)(65,153,77,136)(86,144,93,156)(87,145,94,157)(88,141,95,158)(89,142,91,159)(90,143,92,160), (1,105,12,121)(2,101,13,122)(3,102,14,123)(4,103,15,124)(5,104,11,125)(6,85,144,64)(7,81,145,65)(8,82,141,61)(9,83,142,62)(10,84,143,63)(16,95,137,57)(17,91,138,58)(18,92,139,59)(19,93,140,60)(20,94,136,56)(21,108,159,79)(22,109,160,80)(23,110,156,76)(24,106,157,77)(25,107,158,78)(26,130,50,111)(27,126,46,112)(28,127,47,113)(29,128,48,114)(30,129,49,115)(31,86,152,72)(32,87,153,73)(33,88,154,74)(34,89,155,75)(35,90,151,71)(36,150,70,116)(37,146,66,117)(38,147,67,118)(39,148,68,119)(40,149,69,120)(41,135,55,97)(42,131,51,98)(43,132,52,99)(44,133,53,100)(45,134,54,96) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,54,12,45),(2,55,13,41),(3,51,14,42),(4,52,15,43),(5,53,11,44),(6,19,144,140),(7,20,145,136),(8,16,141,137),(9,17,142,138),(10,18,143,139),(21,34,159,155),(22,35,160,151),(23,31,156,152),(24,32,157,153),(25,33,158,154),(26,69,50,40),(27,70,46,36),(28,66,47,37),(29,67,48,38),(30,68,49,39),(56,65,94,81),(57,61,95,82),(58,62,91,83),(59,63,92,84),(60,64,93,85),(71,80,90,109),(72,76,86,110),(73,77,87,106),(74,78,88,107),(75,79,89,108),(96,105,134,121),(97,101,135,122),(98,102,131,123),(99,103,132,124),(100,104,133,125),(111,120,130,149),(112,116,126,150),(113,117,127,146),(114,118,128,147),(115,119,129,148)], [(1,87),(2,88),(3,89),(4,90),(5,86),(6,116),(7,117),(8,118),(9,119),(10,120),(11,72),(12,73),(13,74),(14,75),(15,71),(16,114),(17,115),(18,111),(19,112),(20,113),(21,102),(22,103),(23,104),(24,105),(25,101),(26,84),(27,85),(28,81),(29,82),(30,83),(31,100),(32,96),(33,97),(34,98),(35,99),(36,60),(37,56),(38,57),(39,58),(40,59),(41,107),(42,108),(43,109),(44,110),(45,106),(46,64),(47,65),(48,61),(49,62),(50,63),(51,79),(52,80),(53,76),(54,77),(55,78),(66,94),(67,95),(68,91),(69,92),(70,93),(121,157),(122,158),(123,159),(124,160),(125,156),(126,140),(127,136),(128,137),(129,138),(130,139),(131,155),(132,151),(133,152),(134,153),(135,154),(141,147),(142,148),(143,149),(144,150),(145,146)], [(1,127,66,134),(2,128,67,135),(3,129,68,131),(4,130,69,132),(5,126,70,133),(6,60,23,72),(7,56,24,73),(8,57,25,74),(9,58,21,75),(10,59,22,71),(11,112,36,100),(12,113,37,96),(13,114,38,97),(14,115,39,98),(15,111,40,99),(16,82,33,107),(17,83,34,108),(18,84,35,109),(19,85,31,110),(20,81,32,106),(26,124,43,149),(27,125,44,150),(28,121,45,146),(29,122,41,147),(30,123,42,148),(46,104,53,116),(47,105,54,117),(48,101,55,118),(49,102,51,119),(50,103,52,120),(61,154,78,137),(62,155,79,138),(63,151,80,139),(64,152,76,140),(65,153,77,136),(86,144,93,156),(87,145,94,157),(88,141,95,158),(89,142,91,159),(90,143,92,160)], [(1,105,12,121),(2,101,13,122),(3,102,14,123),(4,103,15,124),(5,104,11,125),(6,85,144,64),(7,81,145,65),(8,82,141,61),(9,83,142,62),(10,84,143,63),(16,95,137,57),(17,91,138,58),(18,92,139,59),(19,93,140,60),(20,94,136,56),(21,108,159,79),(22,109,160,80),(23,110,156,76),(24,106,157,77),(25,107,158,78),(26,130,50,111),(27,126,46,112),(28,127,47,113),(29,128,48,114),(30,129,49,115),(31,86,152,72),(32,87,153,73),(33,88,154,74),(34,89,155,75),(35,90,151,71),(36,150,70,116),(37,146,66,117),(38,147,67,118),(39,148,68,119),(40,149,69,120),(41,135,55,97),(42,131,51,98),(43,132,52,99),(44,133,53,100),(45,134,54,96)]])
95 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 5A | 5B | 5C | 5D | 8A | 8B | 8C | 8D | 10A | ··· | 10L | 10M | ··· | 10X | 20A | ··· | 20P | 20Q | ··· | 20X | 20Y | ··· | 20AF | 40A | ··· | 40P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 | 20 | ··· | 20 | 20 | ··· | 20 | 40 | ··· | 40 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | 8 | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 1 | ··· | 1 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
95 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | - | |||||||||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C5 | C10 | C10 | C10 | C10 | C10 | C10 | C10 | D4 | D4 | D4 | D4 | C4○D8 | C5×D4 | C5×D4 | C5×D4 | C5×D4 | C5×C4○D8 | C8.C22 | C5×C8.C22 |
kernel | C5×D4.7D4 | C5×C22⋊C8 | C5×D4⋊C4 | C5×Q8⋊C4 | C5×C22⋊Q8 | C10×SD16 | C10×Q16 | C10×C4○D4 | D4.7D4 | C22⋊C8 | D4⋊C4 | Q8⋊C4 | C22⋊Q8 | C2×SD16 | C2×Q16 | C2×C4○D4 | C2×C20 | C5×D4 | C5×Q8 | C22×C10 | C10 | C2×C4 | D4 | Q8 | C23 | C2 | C10 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 1 | 2 | 2 | 1 | 4 | 4 | 8 | 8 | 4 | 16 | 1 | 4 |
Matrix representation of C5×D4.7D4 ►in GL4(𝔽41) generated by
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 18 | 0 |
0 | 0 | 0 | 18 |
9 | 0 | 0 | 0 |
0 | 32 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 32 | 0 | 0 |
9 | 0 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 |
0 | 38 | 0 | 0 |
27 | 0 | 0 | 0 |
0 | 0 | 1 | 39 |
0 | 0 | 1 | 40 |
0 | 14 | 0 | 0 |
38 | 0 | 0 | 0 |
0 | 0 | 1 | 39 |
0 | 0 | 0 | 40 |
G:=sub<GL(4,GF(41))| [16,0,0,0,0,16,0,0,0,0,18,0,0,0,0,18],[9,0,0,0,0,32,0,0,0,0,1,0,0,0,0,1],[0,9,0,0,32,0,0,0,0,0,40,0,0,0,0,40],[0,27,0,0,38,0,0,0,0,0,1,1,0,0,39,40],[0,38,0,0,14,0,0,0,0,0,1,0,0,0,39,40] >;
C5×D4.7D4 in GAP, Magma, Sage, TeX
C_5\times D_4._7D_4
% in TeX
G:=Group("C5xD4.7D4");
// GroupNames label
G:=SmallGroup(320,953);
// by ID
G=gap.SmallGroup(320,953);
# by ID
G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-2,1120,589,1766,856,7004,3511,172]);
// Polycyclic
G:=Group<a,b,c,d,e|a^5=b^4=c^2=d^4=1,e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=d*b*d^-1=e*b*e^-1=b^-1,d*c*d^-1=e*c*e^-1=b*c,e*d*e^-1=d^-1>;
// generators/relations