direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C2×Q16, C4.8D4, C4.3C23, C8.5C22, C22.16D4, Q8.1C22, (C2×C8).4C2, C2.13(C2×D4), (C2×Q8).4C2, (C2×C4).28C22, SmallGroup(32,41)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×Q16
G = < a,b,c | a2=b8=1, c2=b4, ab=ba, ac=ca, cbc-1=b-1 >
Character table of C2×Q16
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ12 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ13 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ14 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
(1 26)(2 27)(3 28)(4 29)(5 30)(6 31)(7 32)(8 25)(9 23)(10 24)(11 17)(12 18)(13 19)(14 20)(15 21)(16 22)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 23 5 19)(2 22 6 18)(3 21 7 17)(4 20 8 24)(9 30 13 26)(10 29 14 25)(11 28 15 32)(12 27 16 31)
G:=sub<Sym(32)| (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,25)(9,23)(10,24)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,23,5,19)(2,22,6,18)(3,21,7,17)(4,20,8,24)(9,30,13,26)(10,29,14,25)(11,28,15,32)(12,27,16,31)>;
G:=Group( (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,25)(9,23)(10,24)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,23,5,19)(2,22,6,18)(3,21,7,17)(4,20,8,24)(9,30,13,26)(10,29,14,25)(11,28,15,32)(12,27,16,31) );
G=PermutationGroup([[(1,26),(2,27),(3,28),(4,29),(5,30),(6,31),(7,32),(8,25),(9,23),(10,24),(11,17),(12,18),(13,19),(14,20),(15,21),(16,22)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,23,5,19),(2,22,6,18),(3,21,7,17),(4,20,8,24),(9,30,13,26),(10,29,14,25),(11,28,15,32),(12,27,16,31)]])
C2×Q16 is a maximal subgroup of
C2.Q32 C8.17D4 Q16⋊C4 C22⋊Q16 D4.7D4 C4⋊2Q16 Q8.D4 C8.18D4 C8.D4 D4.5D4 C4⋊Q16 C8.12D4 C8.2D4 Q32⋊C2 Q8○D8 C3⋊S3⋊Q16
C2×Q16 is a maximal quotient of
C22⋊Q16 C4⋊2Q16 C8.18D4 C4.Q16 C23.48D4 C4.SD16 C4⋊Q16 C8⋊2Q8 C3⋊S3⋊Q16
Matrix representation of C2×Q16 ►in GL3(𝔽17) generated by
16 | 0 | 0 |
0 | 16 | 0 |
0 | 0 | 16 |
16 | 0 | 0 |
0 | 0 | 6 |
0 | 14 | 6 |
1 | 0 | 0 |
0 | 11 | 14 |
0 | 1 | 6 |
G:=sub<GL(3,GF(17))| [16,0,0,0,16,0,0,0,16],[16,0,0,0,0,14,0,6,6],[1,0,0,0,11,1,0,14,6] >;
C2×Q16 in GAP, Magma, Sage, TeX
C_2\times Q_{16}
% in TeX
G:=Group("C2xQ16");
// GroupNames label
G:=SmallGroup(32,41);
// by ID
G=gap.SmallGroup(32,41);
# by ID
G:=PCGroup([5,-2,2,2,-2,-2,80,101,86,483,248,58]);
// Polycyclic
G:=Group<a,b,c|a^2=b^8=1,c^2=b^4,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export
Subgroup lattice of C2×Q16 in TeX
Character table of C2×Q16 in TeX