Extensions 1→N→G→Q→1 with N=C10 and Q=C4xC8

Direct product G=NxQ with N=C10 and Q=C4xC8
dρLabelID
C2xC4xC40320C2xC4xC40320,903

Semidirect products G=N:Q with N=C10 and Q=C4xC8
extensionφ:Q→Aut NdρLabelID
C10:1(C4xC8) = C2xC8xF5φ: C4xC8/C8C4 ⊆ Aut C1080C10:1(C4xC8)320,1054
C10:2(C4xC8) = C2xC4xC5:C8φ: C4xC8/C2xC4C4 ⊆ Aut C10320C10:2(C4xC8)320,1084
C10:3(C4xC8) = C2xC4xC5:2C8φ: C4xC8/C42C2 ⊆ Aut C10320C10:3(C4xC8)320,547
C10:4(C4xC8) = C2xC8xDic5φ: C4xC8/C2xC8C2 ⊆ Aut C10320C10:4(C4xC8)320,725

Non-split extensions G=N.Q with N=C10 and Q=C4xC8
extensionφ:Q→Aut NdρLabelID
C10.1(C4xC8) = C16xF5φ: C4xC8/C8C4 ⊆ Aut C10804C10.1(C4xC8)320,181
C10.2(C4xC8) = C16:7F5φ: C4xC8/C8C4 ⊆ Aut C10804C10.2(C4xC8)320,182
C10.3(C4xC8) = C20.31M4(2)φ: C4xC8/C8C4 ⊆ Aut C10320C10.3(C4xC8)320,218
C10.4(C4xC8) = D10.3M4(2)φ: C4xC8/C8C4 ⊆ Aut C1080C10.4(C4xC8)320,230
C10.5(C4xC8) = C4xC5:C16φ: C4xC8/C2xC4C4 ⊆ Aut C10320C10.5(C4xC8)320,195
C10.6(C4xC8) = C42.4F5φ: C4xC8/C2xC4C4 ⊆ Aut C10320C10.6(C4xC8)320,197
C10.7(C4xC8) = C8xC5:C8φ: C4xC8/C2xC4C4 ⊆ Aut C10320C10.7(C4xC8)320,216
C10.8(C4xC8) = C40:C8φ: C4xC8/C2xC4C4 ⊆ Aut C10320C10.8(C4xC8)320,217
C10.9(C4xC8) = Dic5:C16φ: C4xC8/C2xC4C4 ⊆ Aut C10320C10.9(C4xC8)320,223
C10.10(C4xC8) = C40.C8φ: C4xC8/C2xC4C4 ⊆ Aut C10320C10.10(C4xC8)320,224
C10.11(C4xC8) = C10.(C4:C8)φ: C4xC8/C2xC4C4 ⊆ Aut C10320C10.11(C4xC8)320,256
C10.12(C4xC8) = C8xC5:2C8φ: C4xC8/C42C2 ⊆ Aut C10320C10.12(C4xC8)320,11
C10.13(C4xC8) = C40:8C8φ: C4xC8/C42C2 ⊆ Aut C10320C10.13(C4xC8)320,13
C10.14(C4xC8) = C4xC5:2C16φ: C4xC8/C42C2 ⊆ Aut C10320C10.14(C4xC8)320,18
C10.15(C4xC8) = C40.10C8φ: C4xC8/C42C2 ⊆ Aut C10320C10.15(C4xC8)320,19
C10.16(C4xC8) = (C2xC20):8C8φ: C4xC8/C42C2 ⊆ Aut C10320C10.16(C4xC8)320,82
C10.17(C4xC8) = C42.279D10φ: C4xC8/C2xC8C2 ⊆ Aut C10320C10.17(C4xC8)320,12
C10.18(C4xC8) = C16xDic5φ: C4xC8/C2xC8C2 ⊆ Aut C10320C10.18(C4xC8)320,58
C10.19(C4xC8) = C80:17C4φ: C4xC8/C2xC8C2 ⊆ Aut C10320C10.19(C4xC8)320,60
C10.20(C4xC8) = (C2xC40):15C4φ: C4xC8/C2xC8C2 ⊆ Aut C10320C10.20(C4xC8)320,108
C10.21(C4xC8) = C5xC8:C8central extension (φ=1)320C10.21(C4xC8)320,127
C10.22(C4xC8) = C5xC22.7C42central extension (φ=1)320C10.22(C4xC8)320,141
C10.23(C4xC8) = C5xC16:5C4central extension (φ=1)320C10.23(C4xC8)320,151

׿
x
:
Z
F
o
wr
Q
<