Extensions 1→N→G→Q→1 with N=C2xC4oD4 and Q=C10

Direct product G=NxQ with N=C2xC4oD4 and Q=C10
dρLabelID
C4oD4xC2xC10160C4oD4xC2xC10320,1631

Semidirect products G=N:Q with N=C2xC4oD4 and Q=C10
extensionφ:Q→Out NdρLabelID
(C2xC4oD4):1C10 = C5xD4:D4φ: C10/C5C2 ⊆ Out C2xC4oD4160(C2xC4oD4):1C10320,950
(C2xC4oD4):2C10 = C5xC22.19C24φ: C10/C5C2 ⊆ Out C2xC4oD480(C2xC4oD4):2C10320,1527
(C2xC4oD4):3C10 = C5xC22.26C24φ: C10/C5C2 ⊆ Out C2xC4oD4160(C2xC4oD4):3C10320,1534
(C2xC4oD4):4C10 = C5xC22.29C24φ: C10/C5C2 ⊆ Out C2xC4oD480(C2xC4oD4):4C10320,1537
(C2xC4oD4):5C10 = C5xC22.31C24φ: C10/C5C2 ⊆ Out C2xC4oD4160(C2xC4oD4):5C10320,1539
(C2xC4oD4):6C10 = C5xD4:5D4φ: C10/C5C2 ⊆ Out C2xC4oD480(C2xC4oD4):6C10320,1548
(C2xC4oD4):7C10 = C5xD4:6D4φ: C10/C5C2 ⊆ Out C2xC4oD4160(C2xC4oD4):7C10320,1549
(C2xC4oD4):8C10 = C5xQ8:5D4φ: C10/C5C2 ⊆ Out C2xC4oD4160(C2xC4oD4):8C10320,1550
(C2xC4oD4):9C10 = C5xQ8:6D4φ: C10/C5C2 ⊆ Out C2xC4oD4160(C2xC4oD4):9C10320,1552
(C2xC4oD4):10C10 = C10xC4oD8φ: C10/C5C2 ⊆ Out C2xC4oD4160(C2xC4oD4):10C10320,1574
(C2xC4oD4):11C10 = C10xC8:C22φ: C10/C5C2 ⊆ Out C2xC4oD480(C2xC4oD4):11C10320,1575
(C2xC4oD4):12C10 = C5xD8:C22φ: C10/C5C2 ⊆ Out C2xC4oD4804(C2xC4oD4):12C10320,1577
(C2xC4oD4):13C10 = C10x2+ 1+4φ: C10/C5C2 ⊆ Out C2xC4oD480(C2xC4oD4):13C10320,1632
(C2xC4oD4):14C10 = C10x2- 1+4φ: C10/C5C2 ⊆ Out C2xC4oD4160(C2xC4oD4):14C10320,1633
(C2xC4oD4):15C10 = C5xC2.C25φ: C10/C5C2 ⊆ Out C2xC4oD4804(C2xC4oD4):15C10320,1634

Non-split extensions G=N.Q with N=C2xC4oD4 and Q=C10
extensionφ:Q→Out NdρLabelID
(C2xC4oD4).1C10 = C5x(C22xC8):C2φ: C10/C5C2 ⊆ Out C2xC4oD4160(C2xC4oD4).1C10320,909
(C2xC4oD4).2C10 = C5xC23.C23φ: C10/C5C2 ⊆ Out C2xC4oD4804(C2xC4oD4).2C10320,911
(C2xC4oD4).3C10 = C5xM4(2).8C22φ: C10/C5C2 ⊆ Out C2xC4oD4804(C2xC4oD4).3C10320,914
(C2xC4oD4).4C10 = C5xC23.24D4φ: C10/C5C2 ⊆ Out C2xC4oD4160(C2xC4oD4).4C10320,917
(C2xC4oD4).5C10 = C5xC23.36D4φ: C10/C5C2 ⊆ Out C2xC4oD4160(C2xC4oD4).5C10320,918
(C2xC4oD4).6C10 = C10xC4wrC2φ: C10/C5C2 ⊆ Out C2xC4oD480(C2xC4oD4).6C10320,921
(C2xC4oD4).7C10 = C5xC42:C22φ: C10/C5C2 ⊆ Out C2xC4oD4804(C2xC4oD4).7C10320,922
(C2xC4oD4).8C10 = C5xD4.7D4φ: C10/C5C2 ⊆ Out C2xC4oD4160(C2xC4oD4).8C10320,953
(C2xC4oD4).9C10 = C5xC23.33C23φ: C10/C5C2 ⊆ Out C2xC4oD4160(C2xC4oD4).9C10320,1522
(C2xC4oD4).10C10 = C5xC23.38C23φ: C10/C5C2 ⊆ Out C2xC4oD4160(C2xC4oD4).10C10320,1538
(C2xC4oD4).11C10 = C5xQ8oM4(2)φ: C10/C5C2 ⊆ Out C2xC4oD4804(C2xC4oD4).11C10320,1570
(C2xC4oD4).12C10 = C10xC8.C22φ: C10/C5C2 ⊆ Out C2xC4oD4160(C2xC4oD4).12C10320,1576
(C2xC4oD4).13C10 = C4oD4xC20φ: trivial image160(C2xC4oD4).13C10320,1519
(C2xC4oD4).14C10 = C10xC8oD4φ: trivial image160(C2xC4oD4).14C10320,1569

׿
x
:
Z
F
o
wr
Q
<