Copied to
clipboard

G = C4○D4×C20order 320 = 26·5

Direct product of C20 and C4○D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C4○D4×C20, D46(C2×C20), Q86(C2×C20), (D4×C20)⋊52C2, (C4×D4)⋊23C10, (C2×C42)⋊8C10, (C4×Q8)⋊18C10, (Q8×C20)⋊38C2, C2.6(C23×C20), C4.18(C22×C20), C42.87(C2×C10), C10.79(C23×C4), C42⋊C219C10, (C4×C20).371C22, (C2×C10).337C24, (C2×C20).959C23, C20.222(C22×C4), C22.1(C22×C20), (D4×C10).331C22, C22.10(C23×C10), C23.29(C22×C10), (Q8×C10).283C22, (C22×C10).253C23, (C22×C20).595C22, (C2×C4×C20)⋊21C2, (C2×C4)⋊8(C2×C20), (C2×C20)⋊46(C2×C4), (C5×D4)⋊36(C2×C4), (C5×Q8)⋊33(C2×C4), C2.4(C10×C4○D4), C4⋊C4.81(C2×C10), (C2×C4○D4).13C10, (C10×C4○D4).27C2, (C2×D4).77(C2×C10), C10.223(C2×C4○D4), (C2×Q8).71(C2×C10), (C5×C42⋊C2)⋊40C2, C22⋊C4.28(C2×C10), (C5×C4⋊C4).406C22, (C22×C4).99(C2×C10), (C2×C4).134(C22×C10), (C2×C10).133(C22×C4), (C5×C22⋊C4).159C22, SmallGroup(320,1519)

Series: Derived Chief Lower central Upper central

C1C2 — C4○D4×C20
C1C2C22C2×C10C2×C20C5×C22⋊C4D4×C20 — C4○D4×C20
C1C2 — C4○D4×C20
C1C4×C20 — C4○D4×C20

Generators and relations for C4○D4×C20
 G = < a,b,c,d | a20=b4=d2=1, c2=b2, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=b2c >

Subgroups: 370 in 310 conjugacy classes, 250 normal (16 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C10, C10, C10, C42, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, C20, C20, C2×C10, C2×C10, C2×C10, C2×C42, C42⋊C2, C4×D4, C4×Q8, C2×C4○D4, C2×C20, C2×C20, C2×C20, C5×D4, C5×Q8, C22×C10, C4×C4○D4, C4×C20, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C22×C20, D4×C10, Q8×C10, C5×C4○D4, C2×C4×C20, C5×C42⋊C2, D4×C20, Q8×C20, C10×C4○D4, C4○D4×C20
Quotients: C1, C2, C4, C22, C5, C2×C4, C23, C10, C22×C4, C4○D4, C24, C20, C2×C10, C23×C4, C2×C4○D4, C2×C20, C22×C10, C4×C4○D4, C22×C20, C5×C4○D4, C23×C10, C23×C20, C10×C4○D4, C4○D4×C20

Smallest permutation representation of C4○D4×C20
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 28 158 71)(2 29 159 72)(3 30 160 73)(4 31 141 74)(5 32 142 75)(6 33 143 76)(7 34 144 77)(8 35 145 78)(9 36 146 79)(10 37 147 80)(11 38 148 61)(12 39 149 62)(13 40 150 63)(14 21 151 64)(15 22 152 65)(16 23 153 66)(17 24 154 67)(18 25 155 68)(19 26 156 69)(20 27 157 70)(41 100 120 133)(42 81 101 134)(43 82 102 135)(44 83 103 136)(45 84 104 137)(46 85 105 138)(47 86 106 139)(48 87 107 140)(49 88 108 121)(50 89 109 122)(51 90 110 123)(52 91 111 124)(53 92 112 125)(54 93 113 126)(55 94 114 127)(56 95 115 128)(57 96 116 129)(58 97 117 130)(59 98 118 131)(60 99 119 132)
(1 132 158 99)(2 133 159 100)(3 134 160 81)(4 135 141 82)(5 136 142 83)(6 137 143 84)(7 138 144 85)(8 139 145 86)(9 140 146 87)(10 121 147 88)(11 122 148 89)(12 123 149 90)(13 124 150 91)(14 125 151 92)(15 126 152 93)(16 127 153 94)(17 128 154 95)(18 129 155 96)(19 130 156 97)(20 131 157 98)(21 53 64 112)(22 54 65 113)(23 55 66 114)(24 56 67 115)(25 57 68 116)(26 58 69 117)(27 59 70 118)(28 60 71 119)(29 41 72 120)(30 42 73 101)(31 43 74 102)(32 44 75 103)(33 45 76 104)(34 46 77 105)(35 47 78 106)(36 48 79 107)(37 49 80 108)(38 50 61 109)(39 51 62 110)(40 52 63 111)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 110)(42 111)(43 112)(44 113)(45 114)(46 115)(47 116)(48 117)(49 118)(50 119)(51 120)(52 101)(53 102)(54 103)(55 104)(56 105)(57 106)(58 107)(59 108)(60 109)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(81 124)(82 125)(83 126)(84 127)(85 128)(86 129)(87 130)(88 131)(89 132)(90 133)(91 134)(92 135)(93 136)(94 137)(95 138)(96 139)(97 140)(98 121)(99 122)(100 123)(141 151)(142 152)(143 153)(144 154)(145 155)(146 156)(147 157)(148 158)(149 159)(150 160)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,28,158,71)(2,29,159,72)(3,30,160,73)(4,31,141,74)(5,32,142,75)(6,33,143,76)(7,34,144,77)(8,35,145,78)(9,36,146,79)(10,37,147,80)(11,38,148,61)(12,39,149,62)(13,40,150,63)(14,21,151,64)(15,22,152,65)(16,23,153,66)(17,24,154,67)(18,25,155,68)(19,26,156,69)(20,27,157,70)(41,100,120,133)(42,81,101,134)(43,82,102,135)(44,83,103,136)(45,84,104,137)(46,85,105,138)(47,86,106,139)(48,87,107,140)(49,88,108,121)(50,89,109,122)(51,90,110,123)(52,91,111,124)(53,92,112,125)(54,93,113,126)(55,94,114,127)(56,95,115,128)(57,96,116,129)(58,97,117,130)(59,98,118,131)(60,99,119,132), (1,132,158,99)(2,133,159,100)(3,134,160,81)(4,135,141,82)(5,136,142,83)(6,137,143,84)(7,138,144,85)(8,139,145,86)(9,140,146,87)(10,121,147,88)(11,122,148,89)(12,123,149,90)(13,124,150,91)(14,125,151,92)(15,126,152,93)(16,127,153,94)(17,128,154,95)(18,129,155,96)(19,130,156,97)(20,131,157,98)(21,53,64,112)(22,54,65,113)(23,55,66,114)(24,56,67,115)(25,57,68,116)(26,58,69,117)(27,59,70,118)(28,60,71,119)(29,41,72,120)(30,42,73,101)(31,43,74,102)(32,44,75,103)(33,45,76,104)(34,46,77,105)(35,47,78,106)(36,48,79,107)(37,49,80,108)(38,50,61,109)(39,51,62,110)(40,52,63,111), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,110)(42,111)(43,112)(44,113)(45,114)(46,115)(47,116)(48,117)(49,118)(50,119)(51,120)(52,101)(53,102)(54,103)(55,104)(56,105)(57,106)(58,107)(59,108)(60,109)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,124)(82,125)(83,126)(84,127)(85,128)(86,129)(87,130)(88,131)(89,132)(90,133)(91,134)(92,135)(93,136)(94,137)(95,138)(96,139)(97,140)(98,121)(99,122)(100,123)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,28,158,71)(2,29,159,72)(3,30,160,73)(4,31,141,74)(5,32,142,75)(6,33,143,76)(7,34,144,77)(8,35,145,78)(9,36,146,79)(10,37,147,80)(11,38,148,61)(12,39,149,62)(13,40,150,63)(14,21,151,64)(15,22,152,65)(16,23,153,66)(17,24,154,67)(18,25,155,68)(19,26,156,69)(20,27,157,70)(41,100,120,133)(42,81,101,134)(43,82,102,135)(44,83,103,136)(45,84,104,137)(46,85,105,138)(47,86,106,139)(48,87,107,140)(49,88,108,121)(50,89,109,122)(51,90,110,123)(52,91,111,124)(53,92,112,125)(54,93,113,126)(55,94,114,127)(56,95,115,128)(57,96,116,129)(58,97,117,130)(59,98,118,131)(60,99,119,132), (1,132,158,99)(2,133,159,100)(3,134,160,81)(4,135,141,82)(5,136,142,83)(6,137,143,84)(7,138,144,85)(8,139,145,86)(9,140,146,87)(10,121,147,88)(11,122,148,89)(12,123,149,90)(13,124,150,91)(14,125,151,92)(15,126,152,93)(16,127,153,94)(17,128,154,95)(18,129,155,96)(19,130,156,97)(20,131,157,98)(21,53,64,112)(22,54,65,113)(23,55,66,114)(24,56,67,115)(25,57,68,116)(26,58,69,117)(27,59,70,118)(28,60,71,119)(29,41,72,120)(30,42,73,101)(31,43,74,102)(32,44,75,103)(33,45,76,104)(34,46,77,105)(35,47,78,106)(36,48,79,107)(37,49,80,108)(38,50,61,109)(39,51,62,110)(40,52,63,111), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,110)(42,111)(43,112)(44,113)(45,114)(46,115)(47,116)(48,117)(49,118)(50,119)(51,120)(52,101)(53,102)(54,103)(55,104)(56,105)(57,106)(58,107)(59,108)(60,109)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,124)(82,125)(83,126)(84,127)(85,128)(86,129)(87,130)(88,131)(89,132)(90,133)(91,134)(92,135)(93,136)(94,137)(95,138)(96,139)(97,140)(98,121)(99,122)(100,123)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,28,158,71),(2,29,159,72),(3,30,160,73),(4,31,141,74),(5,32,142,75),(6,33,143,76),(7,34,144,77),(8,35,145,78),(9,36,146,79),(10,37,147,80),(11,38,148,61),(12,39,149,62),(13,40,150,63),(14,21,151,64),(15,22,152,65),(16,23,153,66),(17,24,154,67),(18,25,155,68),(19,26,156,69),(20,27,157,70),(41,100,120,133),(42,81,101,134),(43,82,102,135),(44,83,103,136),(45,84,104,137),(46,85,105,138),(47,86,106,139),(48,87,107,140),(49,88,108,121),(50,89,109,122),(51,90,110,123),(52,91,111,124),(53,92,112,125),(54,93,113,126),(55,94,114,127),(56,95,115,128),(57,96,116,129),(58,97,117,130),(59,98,118,131),(60,99,119,132)], [(1,132,158,99),(2,133,159,100),(3,134,160,81),(4,135,141,82),(5,136,142,83),(6,137,143,84),(7,138,144,85),(8,139,145,86),(9,140,146,87),(10,121,147,88),(11,122,148,89),(12,123,149,90),(13,124,150,91),(14,125,151,92),(15,126,152,93),(16,127,153,94),(17,128,154,95),(18,129,155,96),(19,130,156,97),(20,131,157,98),(21,53,64,112),(22,54,65,113),(23,55,66,114),(24,56,67,115),(25,57,68,116),(26,58,69,117),(27,59,70,118),(28,60,71,119),(29,41,72,120),(30,42,73,101),(31,43,74,102),(32,44,75,103),(33,45,76,104),(34,46,77,105),(35,47,78,106),(36,48,79,107),(37,49,80,108),(38,50,61,109),(39,51,62,110),(40,52,63,111)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,110),(42,111),(43,112),(44,113),(45,114),(46,115),(47,116),(48,117),(49,118),(50,119),(51,120),(52,101),(53,102),(54,103),(55,104),(56,105),(57,106),(58,107),(59,108),(60,109),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(81,124),(82,125),(83,126),(84,127),(85,128),(86,129),(87,130),(88,131),(89,132),(90,133),(91,134),(92,135),(93,136),(94,137),(95,138),(96,139),(97,140),(98,121),(99,122),(100,123),(141,151),(142,152),(143,153),(144,154),(145,155),(146,156),(147,157),(148,158),(149,159),(150,160)]])

200 conjugacy classes

class 1 2A2B2C2D···2I4A···4L4M···4AD5A5B5C5D10A···10L10M···10AJ20A···20AV20AW···20DP
order12222···24···44···4555510···1010···1020···2020···20
size11112···21···12···211111···12···21···12···2

200 irreducible representations

dim1111111111111122
type++++++
imageC1C2C2C2C2C2C4C5C10C10C10C10C10C20C4○D4C5×C4○D4
kernelC4○D4×C20C2×C4×C20C5×C42⋊C2D4×C20Q8×C20C10×C4○D4C5×C4○D4C4×C4○D4C2×C42C42⋊C2C4×D4C4×Q8C2×C4○D4C4○D4C20C4
# reps1336211641212248464832

Matrix representation of C4○D4×C20 in GL3(𝔽41) generated by

3200
0100
0010
,
100
0320
0032
,
4000
04039
011
,
100
010
04040
G:=sub<GL(3,GF(41))| [32,0,0,0,10,0,0,0,10],[1,0,0,0,32,0,0,0,32],[40,0,0,0,40,1,0,39,1],[1,0,0,0,1,40,0,0,40] >;

C4○D4×C20 in GAP, Magma, Sage, TeX

C_4\circ D_4\times C_{20}
% in TeX

G:=Group("C4oD4xC20");
// GroupNames label

G:=SmallGroup(320,1519);
// by ID

G=gap.SmallGroup(320,1519);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1120,1149,856,304]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^4=d^2=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=b^2*c>;
// generators/relations

׿
×
𝔽