Extensions 1→N→G→Q→1 with N=C2xC8 and Q=Dic5

Direct product G=NxQ with N=C2xC8 and Q=Dic5
dρLabelID
C2xC8xDic5320C2xC8xDic5320,725

Semidirect products G=N:Q with N=C2xC8 and Q=Dic5
extensionφ:Q→Aut NdρLabelID
(C2xC8):1Dic5 = (C2xC40):C4φ: Dic5/C5C4 ⊆ Aut C2xC8804(C2xC8):1Dic5320,114
(C2xC8):2Dic5 = C23.9D20φ: Dic5/C5C4 ⊆ Aut C2xC8804(C2xC8):2Dic5320,115
(C2xC8):3Dic5 = (C2xC40):15C4φ: Dic5/C10C2 ⊆ Aut C2xC8320(C2xC8):3Dic5320,108
(C2xC8):4Dic5 = C20.39C42φ: Dic5/C10C2 ⊆ Aut C2xC8320(C2xC8):4Dic5320,109
(C2xC8):5Dic5 = C2xC40:5C4φ: Dic5/C10C2 ⊆ Aut C2xC8320(C2xC8):5Dic5320,732
(C2xC8):6Dic5 = C23.22D20φ: Dic5/C10C2 ⊆ Aut C2xC8160(C2xC8):6Dic5320,733
(C2xC8):7Dic5 = C2xC40:6C4φ: Dic5/C10C2 ⊆ Aut C2xC8320(C2xC8):7Dic5320,731
(C2xC8):8Dic5 = C2xC40:8C4φ: Dic5/C10C2 ⊆ Aut C2xC8320(C2xC8):8Dic5320,727
(C2xC8):9Dic5 = C20.42C42φ: Dic5/C10C2 ⊆ Aut C2xC8160(C2xC8):9Dic5320,728

Non-split extensions G=N.Q with N=C2xC8 and Q=Dic5
extensionφ:Q→Aut NdρLabelID
(C2xC8).1Dic5 = C20.45C42φ: Dic5/C5C4 ⊆ Aut C2xC8804(C2xC8).1Dic5320,24
(C2xC8).2Dic5 = C40.D4φ: Dic5/C5C4 ⊆ Aut C2xC8804(C2xC8).2Dic5320,111
(C2xC8).3Dic5 = C20.51C42φ: Dic5/C5C4 ⊆ Aut C2xC8804(C2xC8).3Dic5320,118
(C2xC8).4Dic5 = C42.279D10φ: Dic5/C10C2 ⊆ Aut C2xC8320(C2xC8).4Dic5320,12
(C2xC8).5Dic5 = C20:3C16φ: Dic5/C10C2 ⊆ Aut C2xC8320(C2xC8).5Dic5320,20
(C2xC8).6Dic5 = C40.91D4φ: Dic5/C10C2 ⊆ Aut C2xC8160(C2xC8).6Dic5320,107
(C2xC8).7Dic5 = C20.40C42φ: Dic5/C10C2 ⊆ Aut C2xC8160(C2xC8).7Dic5320,110
(C2xC8).8Dic5 = C40:5C8φ: Dic5/C10C2 ⊆ Aut C2xC8320(C2xC8).8Dic5320,16
(C2xC8).9Dic5 = C40.7C8φ: Dic5/C10C2 ⊆ Aut C2xC8802(C2xC8).9Dic5320,21
(C2xC8).10Dic5 = C40:6C8φ: Dic5/C10C2 ⊆ Aut C2xC8320(C2xC8).10Dic5320,15
(C2xC8).11Dic5 = C2xC40.6C4φ: Dic5/C10C2 ⊆ Aut C2xC8160(C2xC8).11Dic5320,734
(C2xC8).12Dic5 = C40:8C8φ: Dic5/C10C2 ⊆ Aut C2xC8320(C2xC8).12Dic5320,13
(C2xC8).13Dic5 = C40.10C8φ: Dic5/C10C2 ⊆ Aut C2xC8320(C2xC8).13Dic5320,19
(C2xC8).14Dic5 = C80.9C4φ: Dic5/C10C2 ⊆ Aut C2xC81602(C2xC8).14Dic5320,57
(C2xC8).15Dic5 = C2xC20.4C8φ: Dic5/C10C2 ⊆ Aut C2xC8160(C2xC8).15Dic5320,724
(C2xC8).16Dic5 = C8xC5:2C8central extension (φ=1)320(C2xC8).16Dic5320,11
(C2xC8).17Dic5 = C4xC5:2C16central extension (φ=1)320(C2xC8).17Dic5320,18
(C2xC8).18Dic5 = C2xC5:2C32central extension (φ=1)320(C2xC8).18Dic5320,56
(C2xC8).19Dic5 = C22xC5:2C16central extension (φ=1)320(C2xC8).19Dic5320,723

׿
x
:
Z
F
o
wr
Q
<