Extensions 1→N→G→Q→1 with N=C2×C8 and Q=Dic5

Direct product G=N×Q with N=C2×C8 and Q=Dic5
dρLabelID
C2×C8×Dic5320C2xC8xDic5320,725

Semidirect products G=N:Q with N=C2×C8 and Q=Dic5
extensionφ:Q→Aut NdρLabelID
(C2×C8)⋊1Dic5 = (C2×C40)⋊C4φ: Dic5/C5C4 ⊆ Aut C2×C8804(C2xC8):1Dic5320,114
(C2×C8)⋊2Dic5 = C23.9D20φ: Dic5/C5C4 ⊆ Aut C2×C8804(C2xC8):2Dic5320,115
(C2×C8)⋊3Dic5 = (C2×C40)⋊15C4φ: Dic5/C10C2 ⊆ Aut C2×C8320(C2xC8):3Dic5320,108
(C2×C8)⋊4Dic5 = C20.39C42φ: Dic5/C10C2 ⊆ Aut C2×C8320(C2xC8):4Dic5320,109
(C2×C8)⋊5Dic5 = C2×C405C4φ: Dic5/C10C2 ⊆ Aut C2×C8320(C2xC8):5Dic5320,732
(C2×C8)⋊6Dic5 = C23.22D20φ: Dic5/C10C2 ⊆ Aut C2×C8160(C2xC8):6Dic5320,733
(C2×C8)⋊7Dic5 = C2×C406C4φ: Dic5/C10C2 ⊆ Aut C2×C8320(C2xC8):7Dic5320,731
(C2×C8)⋊8Dic5 = C2×C408C4φ: Dic5/C10C2 ⊆ Aut C2×C8320(C2xC8):8Dic5320,727
(C2×C8)⋊9Dic5 = C20.42C42φ: Dic5/C10C2 ⊆ Aut C2×C8160(C2xC8):9Dic5320,728

Non-split extensions G=N.Q with N=C2×C8 and Q=Dic5
extensionφ:Q→Aut NdρLabelID
(C2×C8).1Dic5 = C20.45C42φ: Dic5/C5C4 ⊆ Aut C2×C8804(C2xC8).1Dic5320,24
(C2×C8).2Dic5 = C40.D4φ: Dic5/C5C4 ⊆ Aut C2×C8804(C2xC8).2Dic5320,111
(C2×C8).3Dic5 = C20.51C42φ: Dic5/C5C4 ⊆ Aut C2×C8804(C2xC8).3Dic5320,118
(C2×C8).4Dic5 = C42.279D10φ: Dic5/C10C2 ⊆ Aut C2×C8320(C2xC8).4Dic5320,12
(C2×C8).5Dic5 = C203C16φ: Dic5/C10C2 ⊆ Aut C2×C8320(C2xC8).5Dic5320,20
(C2×C8).6Dic5 = C40.91D4φ: Dic5/C10C2 ⊆ Aut C2×C8160(C2xC8).6Dic5320,107
(C2×C8).7Dic5 = C20.40C42φ: Dic5/C10C2 ⊆ Aut C2×C8160(C2xC8).7Dic5320,110
(C2×C8).8Dic5 = C405C8φ: Dic5/C10C2 ⊆ Aut C2×C8320(C2xC8).8Dic5320,16
(C2×C8).9Dic5 = C40.7C8φ: Dic5/C10C2 ⊆ Aut C2×C8802(C2xC8).9Dic5320,21
(C2×C8).10Dic5 = C406C8φ: Dic5/C10C2 ⊆ Aut C2×C8320(C2xC8).10Dic5320,15
(C2×C8).11Dic5 = C2×C40.6C4φ: Dic5/C10C2 ⊆ Aut C2×C8160(C2xC8).11Dic5320,734
(C2×C8).12Dic5 = C408C8φ: Dic5/C10C2 ⊆ Aut C2×C8320(C2xC8).12Dic5320,13
(C2×C8).13Dic5 = C40.10C8φ: Dic5/C10C2 ⊆ Aut C2×C8320(C2xC8).13Dic5320,19
(C2×C8).14Dic5 = C80.9C4φ: Dic5/C10C2 ⊆ Aut C2×C81602(C2xC8).14Dic5320,57
(C2×C8).15Dic5 = C2×C20.4C8φ: Dic5/C10C2 ⊆ Aut C2×C8160(C2xC8).15Dic5320,724
(C2×C8).16Dic5 = C8×C52C8central extension (φ=1)320(C2xC8).16Dic5320,11
(C2×C8).17Dic5 = C4×C52C16central extension (φ=1)320(C2xC8).17Dic5320,18
(C2×C8).18Dic5 = C2×C52C32central extension (φ=1)320(C2xC8).18Dic5320,56
(C2×C8).19Dic5 = C22×C52C16central extension (φ=1)320(C2xC8).19Dic5320,723

׿
×
𝔽