extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C8).1Dic5 = C20.45C42 | φ: Dic5/C5 → C4 ⊆ Aut C2×C8 | 80 | 4 | (C2xC8).1Dic5 | 320,24 |
(C2×C8).2Dic5 = C40.D4 | φ: Dic5/C5 → C4 ⊆ Aut C2×C8 | 80 | 4 | (C2xC8).2Dic5 | 320,111 |
(C2×C8).3Dic5 = C20.51C42 | φ: Dic5/C5 → C4 ⊆ Aut C2×C8 | 80 | 4 | (C2xC8).3Dic5 | 320,118 |
(C2×C8).4Dic5 = C42.279D10 | φ: Dic5/C10 → C2 ⊆ Aut C2×C8 | 320 | | (C2xC8).4Dic5 | 320,12 |
(C2×C8).5Dic5 = C20⋊3C16 | φ: Dic5/C10 → C2 ⊆ Aut C2×C8 | 320 | | (C2xC8).5Dic5 | 320,20 |
(C2×C8).6Dic5 = C40.91D4 | φ: Dic5/C10 → C2 ⊆ Aut C2×C8 | 160 | | (C2xC8).6Dic5 | 320,107 |
(C2×C8).7Dic5 = C20.40C42 | φ: Dic5/C10 → C2 ⊆ Aut C2×C8 | 160 | | (C2xC8).7Dic5 | 320,110 |
(C2×C8).8Dic5 = C40⋊5C8 | φ: Dic5/C10 → C2 ⊆ Aut C2×C8 | 320 | | (C2xC8).8Dic5 | 320,16 |
(C2×C8).9Dic5 = C40.7C8 | φ: Dic5/C10 → C2 ⊆ Aut C2×C8 | 80 | 2 | (C2xC8).9Dic5 | 320,21 |
(C2×C8).10Dic5 = C40⋊6C8 | φ: Dic5/C10 → C2 ⊆ Aut C2×C8 | 320 | | (C2xC8).10Dic5 | 320,15 |
(C2×C8).11Dic5 = C2×C40.6C4 | φ: Dic5/C10 → C2 ⊆ Aut C2×C8 | 160 | | (C2xC8).11Dic5 | 320,734 |
(C2×C8).12Dic5 = C40⋊8C8 | φ: Dic5/C10 → C2 ⊆ Aut C2×C8 | 320 | | (C2xC8).12Dic5 | 320,13 |
(C2×C8).13Dic5 = C40.10C8 | φ: Dic5/C10 → C2 ⊆ Aut C2×C8 | 320 | | (C2xC8).13Dic5 | 320,19 |
(C2×C8).14Dic5 = C80.9C4 | φ: Dic5/C10 → C2 ⊆ Aut C2×C8 | 160 | 2 | (C2xC8).14Dic5 | 320,57 |
(C2×C8).15Dic5 = C2×C20.4C8 | φ: Dic5/C10 → C2 ⊆ Aut C2×C8 | 160 | | (C2xC8).15Dic5 | 320,724 |
(C2×C8).16Dic5 = C8×C5⋊2C8 | central extension (φ=1) | 320 | | (C2xC8).16Dic5 | 320,11 |
(C2×C8).17Dic5 = C4×C5⋊2C16 | central extension (φ=1) | 320 | | (C2xC8).17Dic5 | 320,18 |
(C2×C8).18Dic5 = C2×C5⋊2C32 | central extension (φ=1) | 320 | | (C2xC8).18Dic5 | 320,56 |
(C2×C8).19Dic5 = C22×C5⋊2C16 | central extension (φ=1) | 320 | | (C2xC8).19Dic5 | 320,723 |