Extensions 1→N→G→Q→1 with N=C8 and Q=C2×Dic5

Direct product G=N×Q with N=C8 and Q=C2×Dic5
dρLabelID
C2×C8×Dic5320C2xC8xDic5320,725

Semidirect products G=N:Q with N=C8 and Q=C2×Dic5
extensionφ:Q→Aut NdρLabelID
C81(C2×Dic5) = C23.47D20φ: C2×Dic5/C10C22 ⊆ Aut C8160C8:1(C2xDic5)320,748
C82(C2×Dic5) = D8⋊Dic5φ: C2×Dic5/C10C22 ⊆ Aut C8160C8:2(C2xDic5)320,779
C83(C2×Dic5) = SD16⋊Dic5φ: C2×Dic5/C10C22 ⊆ Aut C8160C8:3(C2xDic5)320,791
C84(C2×Dic5) = D8×Dic5φ: C2×Dic5/Dic5C2 ⊆ Aut C8160C8:4(C2xDic5)320,776
C85(C2×Dic5) = SD16×Dic5φ: C2×Dic5/Dic5C2 ⊆ Aut C8160C8:5(C2xDic5)320,788
C86(C2×Dic5) = M4(2)×Dic5φ: C2×Dic5/Dic5C2 ⊆ Aut C8160C8:6(C2xDic5)320,744
C87(C2×Dic5) = C2×C405C4φ: C2×Dic5/C2×C10C2 ⊆ Aut C8320C8:7(C2xDic5)320,732
C88(C2×Dic5) = C2×C406C4φ: C2×Dic5/C2×C10C2 ⊆ Aut C8320C8:8(C2xDic5)320,731
C89(C2×Dic5) = C2×C408C4φ: C2×Dic5/C2×C10C2 ⊆ Aut C8320C8:9(C2xDic5)320,727

Non-split extensions G=N.Q with N=C8 and Q=C2×Dic5
extensionφ:Q→Aut NdρLabelID
C8.1(C2×Dic5) = D8.Dic5φ: C2×Dic5/C10C22 ⊆ Aut C8804C8.1(C2xDic5)320,121
C8.2(C2×Dic5) = Q16.Dic5φ: C2×Dic5/C10C22 ⊆ Aut C81604C8.2(C2xDic5)320,123
C8.3(C2×Dic5) = D82Dic5φ: C2×Dic5/C10C22 ⊆ Aut C8804C8.3(C2xDic5)320,124
C8.4(C2×Dic5) = M4(2).Dic5φ: C2×Dic5/C10C22 ⊆ Aut C8804C8.4(C2xDic5)320,752
C8.5(C2×Dic5) = Q16⋊Dic5φ: C2×Dic5/C10C22 ⊆ Aut C8320C8.5(C2xDic5)320,811
C8.6(C2×Dic5) = D84Dic5φ: C2×Dic5/C10C22 ⊆ Aut C8804C8.6(C2xDic5)320,824
C8.7(C2×Dic5) = C10.D16φ: C2×Dic5/Dic5C2 ⊆ Aut C8160C8.7(C2xDic5)320,120
C8.8(C2×Dic5) = C40.15D4φ: C2×Dic5/Dic5C2 ⊆ Aut C8320C8.8(C2xDic5)320,122
C8.9(C2×Dic5) = C20.58D8φ: C2×Dic5/Dic5C2 ⊆ Aut C81604C8.9(C2xDic5)320,125
C8.10(C2×Dic5) = Q16×Dic5φ: C2×Dic5/Dic5C2 ⊆ Aut C8320C8.10(C2xDic5)320,810
C8.11(C2×Dic5) = D85Dic5φ: C2×Dic5/Dic5C2 ⊆ Aut C8804C8.11(C2xDic5)320,823
C8.12(C2×Dic5) = C20.37C42φ: C2×Dic5/Dic5C2 ⊆ Aut C8160C8.12(C2xDic5)320,749
C8.13(C2×Dic5) = C40.70C23φ: C2×Dic5/Dic5C2 ⊆ Aut C81604C8.13(C2xDic5)320,767
C8.14(C2×Dic5) = C8013C4φ: C2×Dic5/C2×C10C2 ⊆ Aut C8320C8.14(C2xDic5)320,62
C8.15(C2×Dic5) = C8014C4φ: C2×Dic5/C2×C10C2 ⊆ Aut C8320C8.15(C2xDic5)320,63
C8.16(C2×Dic5) = C80.6C4φ: C2×Dic5/C2×C10C2 ⊆ Aut C81602C8.16(C2xDic5)320,64
C8.17(C2×Dic5) = C23.22D20φ: C2×Dic5/C2×C10C2 ⊆ Aut C8160C8.17(C2xDic5)320,733
C8.18(C2×Dic5) = C40.Q8φ: C2×Dic5/C2×C10C2 ⊆ Aut C8804C8.18(C2xDic5)320,71
C8.19(C2×Dic5) = C2×C40.6C4φ: C2×Dic5/C2×C10C2 ⊆ Aut C8160C8.19(C2xDic5)320,734
C8.20(C2×Dic5) = C80⋊C4φ: C2×Dic5/C2×C10C2 ⊆ Aut C8804C8.20(C2xDic5)320,70
C8.21(C2×Dic5) = C2×C52C32central extension (φ=1)320C8.21(C2xDic5)320,56
C8.22(C2×Dic5) = C80.9C4central extension (φ=1)1602C8.22(C2xDic5)320,57
C8.23(C2×Dic5) = C16×Dic5central extension (φ=1)320C8.23(C2xDic5)320,58
C8.24(C2×Dic5) = C8017C4central extension (φ=1)320C8.24(C2xDic5)320,60
C8.25(C2×Dic5) = C22×C52C16central extension (φ=1)320C8.25(C2xDic5)320,723
C8.26(C2×Dic5) = C2×C20.4C8central extension (φ=1)160C8.26(C2xDic5)320,724
C8.27(C2×Dic5) = C20.42C42central extension (φ=1)160C8.27(C2xDic5)320,728

׿
×
𝔽