Copied to
clipboard

G = D8×Dic5order 320 = 26·5

Direct product of D8 and Dic5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D8×Dic5, C56(C4×D8), (C5×D8)⋊8C4, C2.5(D5×D8), C4016(C2×C4), (C2×D8).7D5, C84(C2×Dic5), (C8×Dic5)⋊4C2, D41(C2×Dic5), (D4×Dic5)⋊3C2, (C10×D8).4C2, C405C422C2, C10.42(C2×D8), C10.123(C4×D4), (C2×C8).235D10, C2.10(D4×Dic5), (C2×D4).139D10, C20.89(C4○D4), C10.31(C4○D8), D4⋊Dic524C2, C2.5(D83D5), (C2×C40).87C22, C22.114(D4×D5), C4.26(D42D5), C4.1(C22×Dic5), C20.130(C22×C4), (C2×C20).426C23, (C2×Dic5).280D4, (D4×C10).76C22, C4⋊Dic5.161C22, (C4×Dic5).268C22, (C5×D4)⋊16(C2×C4), (C2×C10).339(C2×D4), (C2×C4).516(C22×D5), (C2×C52C8).276C22, SmallGroup(320,776)

Series: Derived Chief Lower central Upper central

C1C20 — D8×Dic5
C1C5C10C2×C10C2×C20C4×Dic5D4×Dic5 — D8×Dic5
C5C10C20 — D8×Dic5
C1C22C2×C4C2×D8

Generators and relations for D8×Dic5
 G = < a,b,c,d | a8=b2=c10=1, d2=c5, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 470 in 134 conjugacy classes, 59 normal (27 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, D4, C23, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, C22×C4, C2×D4, Dic5, Dic5, C20, C2×C10, C2×C10, C4×C8, D4⋊C4, C2.D8, C4×D4, C2×D8, C52C8, C40, C2×Dic5, C2×Dic5, C2×C20, C5×D4, C5×D4, C22×C10, C4×D8, C2×C52C8, C4×Dic5, C4⋊Dic5, C23.D5, C2×C40, C5×D8, C22×Dic5, D4×C10, C8×Dic5, C405C4, D4⋊Dic5, D4×Dic5, C10×D8, D8×Dic5
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, D8, C22×C4, C2×D4, C4○D4, Dic5, D10, C4×D4, C2×D8, C4○D8, C2×Dic5, C22×D5, C4×D8, D4×D5, D42D5, C22×Dic5, D5×D8, D83D5, D4×Dic5, D8×Dic5

Smallest permutation representation of D8×Dic5
On 160 points
Generators in S160
(1 90 14 74 39 65 48 59)(2 81 15 75 40 66 49 60)(3 82 16 76 31 67 50 51)(4 83 17 77 32 68 41 52)(5 84 18 78 33 69 42 53)(6 85 19 79 34 70 43 54)(7 86 20 80 35 61 44 55)(8 87 11 71 36 62 45 56)(9 88 12 72 37 63 46 57)(10 89 13 73 38 64 47 58)(21 110 156 111 145 127 136 91)(22 101 157 112 146 128 137 92)(23 102 158 113 147 129 138 93)(24 103 159 114 148 130 139 94)(25 104 160 115 149 121 140 95)(26 105 151 116 150 122 131 96)(27 106 152 117 141 123 132 97)(28 107 153 118 142 124 133 98)(29 108 154 119 143 125 134 99)(30 109 155 120 144 126 135 100)
(1 54)(2 55)(3 56)(4 57)(5 58)(6 59)(7 60)(8 51)(9 52)(10 53)(11 67)(12 68)(13 69)(14 70)(15 61)(16 62)(17 63)(18 64)(19 65)(20 66)(21 122)(22 123)(23 124)(24 125)(25 126)(26 127)(27 128)(28 129)(29 130)(30 121)(31 71)(32 72)(33 73)(34 74)(35 75)(36 76)(37 77)(38 78)(39 79)(40 80)(41 88)(42 89)(43 90)(44 81)(45 82)(46 83)(47 84)(48 85)(49 86)(50 87)(91 131)(92 132)(93 133)(94 134)(95 135)(96 136)(97 137)(98 138)(99 139)(100 140)(101 141)(102 142)(103 143)(104 144)(105 145)(106 146)(107 147)(108 148)(109 149)(110 150)(111 151)(112 152)(113 153)(114 154)(115 155)(116 156)(117 157)(118 158)(119 159)(120 160)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 116 6 111)(2 115 7 120)(3 114 8 119)(4 113 9 118)(5 112 10 117)(11 125 16 130)(12 124 17 129)(13 123 18 128)(14 122 19 127)(15 121 20 126)(21 65 26 70)(22 64 27 69)(23 63 28 68)(24 62 29 67)(25 61 30 66)(31 94 36 99)(32 93 37 98)(33 92 38 97)(34 91 39 96)(35 100 40 95)(41 102 46 107)(42 101 47 106)(43 110 48 105)(44 109 49 104)(45 108 50 103)(51 159 56 154)(52 158 57 153)(53 157 58 152)(54 156 59 151)(55 155 60 160)(71 134 76 139)(72 133 77 138)(73 132 78 137)(74 131 79 136)(75 140 80 135)(81 149 86 144)(82 148 87 143)(83 147 88 142)(84 146 89 141)(85 145 90 150)

G:=sub<Sym(160)| (1,90,14,74,39,65,48,59)(2,81,15,75,40,66,49,60)(3,82,16,76,31,67,50,51)(4,83,17,77,32,68,41,52)(5,84,18,78,33,69,42,53)(6,85,19,79,34,70,43,54)(7,86,20,80,35,61,44,55)(8,87,11,71,36,62,45,56)(9,88,12,72,37,63,46,57)(10,89,13,73,38,64,47,58)(21,110,156,111,145,127,136,91)(22,101,157,112,146,128,137,92)(23,102,158,113,147,129,138,93)(24,103,159,114,148,130,139,94)(25,104,160,115,149,121,140,95)(26,105,151,116,150,122,131,96)(27,106,152,117,141,123,132,97)(28,107,153,118,142,124,133,98)(29,108,154,119,143,125,134,99)(30,109,155,120,144,126,135,100), (1,54)(2,55)(3,56)(4,57)(5,58)(6,59)(7,60)(8,51)(9,52)(10,53)(11,67)(12,68)(13,69)(14,70)(15,61)(16,62)(17,63)(18,64)(19,65)(20,66)(21,122)(22,123)(23,124)(24,125)(25,126)(26,127)(27,128)(28,129)(29,130)(30,121)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,88)(42,89)(43,90)(44,81)(45,82)(46,83)(47,84)(48,85)(49,86)(50,87)(91,131)(92,132)(93,133)(94,134)(95,135)(96,136)(97,137)(98,138)(99,139)(100,140)(101,141)(102,142)(103,143)(104,144)(105,145)(106,146)(107,147)(108,148)(109,149)(110,150)(111,151)(112,152)(113,153)(114,154)(115,155)(116,156)(117,157)(118,158)(119,159)(120,160), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,116,6,111)(2,115,7,120)(3,114,8,119)(4,113,9,118)(5,112,10,117)(11,125,16,130)(12,124,17,129)(13,123,18,128)(14,122,19,127)(15,121,20,126)(21,65,26,70)(22,64,27,69)(23,63,28,68)(24,62,29,67)(25,61,30,66)(31,94,36,99)(32,93,37,98)(33,92,38,97)(34,91,39,96)(35,100,40,95)(41,102,46,107)(42,101,47,106)(43,110,48,105)(44,109,49,104)(45,108,50,103)(51,159,56,154)(52,158,57,153)(53,157,58,152)(54,156,59,151)(55,155,60,160)(71,134,76,139)(72,133,77,138)(73,132,78,137)(74,131,79,136)(75,140,80,135)(81,149,86,144)(82,148,87,143)(83,147,88,142)(84,146,89,141)(85,145,90,150)>;

G:=Group( (1,90,14,74,39,65,48,59)(2,81,15,75,40,66,49,60)(3,82,16,76,31,67,50,51)(4,83,17,77,32,68,41,52)(5,84,18,78,33,69,42,53)(6,85,19,79,34,70,43,54)(7,86,20,80,35,61,44,55)(8,87,11,71,36,62,45,56)(9,88,12,72,37,63,46,57)(10,89,13,73,38,64,47,58)(21,110,156,111,145,127,136,91)(22,101,157,112,146,128,137,92)(23,102,158,113,147,129,138,93)(24,103,159,114,148,130,139,94)(25,104,160,115,149,121,140,95)(26,105,151,116,150,122,131,96)(27,106,152,117,141,123,132,97)(28,107,153,118,142,124,133,98)(29,108,154,119,143,125,134,99)(30,109,155,120,144,126,135,100), (1,54)(2,55)(3,56)(4,57)(5,58)(6,59)(7,60)(8,51)(9,52)(10,53)(11,67)(12,68)(13,69)(14,70)(15,61)(16,62)(17,63)(18,64)(19,65)(20,66)(21,122)(22,123)(23,124)(24,125)(25,126)(26,127)(27,128)(28,129)(29,130)(30,121)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,88)(42,89)(43,90)(44,81)(45,82)(46,83)(47,84)(48,85)(49,86)(50,87)(91,131)(92,132)(93,133)(94,134)(95,135)(96,136)(97,137)(98,138)(99,139)(100,140)(101,141)(102,142)(103,143)(104,144)(105,145)(106,146)(107,147)(108,148)(109,149)(110,150)(111,151)(112,152)(113,153)(114,154)(115,155)(116,156)(117,157)(118,158)(119,159)(120,160), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,116,6,111)(2,115,7,120)(3,114,8,119)(4,113,9,118)(5,112,10,117)(11,125,16,130)(12,124,17,129)(13,123,18,128)(14,122,19,127)(15,121,20,126)(21,65,26,70)(22,64,27,69)(23,63,28,68)(24,62,29,67)(25,61,30,66)(31,94,36,99)(32,93,37,98)(33,92,38,97)(34,91,39,96)(35,100,40,95)(41,102,46,107)(42,101,47,106)(43,110,48,105)(44,109,49,104)(45,108,50,103)(51,159,56,154)(52,158,57,153)(53,157,58,152)(54,156,59,151)(55,155,60,160)(71,134,76,139)(72,133,77,138)(73,132,78,137)(74,131,79,136)(75,140,80,135)(81,149,86,144)(82,148,87,143)(83,147,88,142)(84,146,89,141)(85,145,90,150) );

G=PermutationGroup([[(1,90,14,74,39,65,48,59),(2,81,15,75,40,66,49,60),(3,82,16,76,31,67,50,51),(4,83,17,77,32,68,41,52),(5,84,18,78,33,69,42,53),(6,85,19,79,34,70,43,54),(7,86,20,80,35,61,44,55),(8,87,11,71,36,62,45,56),(9,88,12,72,37,63,46,57),(10,89,13,73,38,64,47,58),(21,110,156,111,145,127,136,91),(22,101,157,112,146,128,137,92),(23,102,158,113,147,129,138,93),(24,103,159,114,148,130,139,94),(25,104,160,115,149,121,140,95),(26,105,151,116,150,122,131,96),(27,106,152,117,141,123,132,97),(28,107,153,118,142,124,133,98),(29,108,154,119,143,125,134,99),(30,109,155,120,144,126,135,100)], [(1,54),(2,55),(3,56),(4,57),(5,58),(6,59),(7,60),(8,51),(9,52),(10,53),(11,67),(12,68),(13,69),(14,70),(15,61),(16,62),(17,63),(18,64),(19,65),(20,66),(21,122),(22,123),(23,124),(24,125),(25,126),(26,127),(27,128),(28,129),(29,130),(30,121),(31,71),(32,72),(33,73),(34,74),(35,75),(36,76),(37,77),(38,78),(39,79),(40,80),(41,88),(42,89),(43,90),(44,81),(45,82),(46,83),(47,84),(48,85),(49,86),(50,87),(91,131),(92,132),(93,133),(94,134),(95,135),(96,136),(97,137),(98,138),(99,139),(100,140),(101,141),(102,142),(103,143),(104,144),(105,145),(106,146),(107,147),(108,148),(109,149),(110,150),(111,151),(112,152),(113,153),(114,154),(115,155),(116,156),(117,157),(118,158),(119,159),(120,160)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,116,6,111),(2,115,7,120),(3,114,8,119),(4,113,9,118),(5,112,10,117),(11,125,16,130),(12,124,17,129),(13,123,18,128),(14,122,19,127),(15,121,20,126),(21,65,26,70),(22,64,27,69),(23,63,28,68),(24,62,29,67),(25,61,30,66),(31,94,36,99),(32,93,37,98),(33,92,38,97),(34,91,39,96),(35,100,40,95),(41,102,46,107),(42,101,47,106),(43,110,48,105),(44,109,49,104),(45,108,50,103),(51,159,56,154),(52,158,57,153),(53,157,58,152),(54,156,59,151),(55,155,60,160),(71,134,76,139),(72,133,77,138),(73,132,78,137),(74,131,79,136),(75,140,80,135),(81,149,86,144),(82,148,87,143),(83,147,88,142),(84,146,89,141),(85,145,90,150)]])

56 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L5A5B8A8B8C8D8E8F8G8H10A···10F10G···10N20A20B20C20D40A···40H
order12222222444444444444558888888810···1010···102020202040···40
size11114444225555101020202020222222101010102···28···844444···4

56 irreducible representations

dim1111111222222224444
type++++++++++-+-++-
imageC1C2C2C2C2C2C4D4D5D8C4○D4D10Dic5D10C4○D8D42D5D4×D5D5×D8D83D5
kernelD8×Dic5C8×Dic5C405C4D4⋊Dic5D4×Dic5C10×D8C5×D8C2×Dic5C2×D8Dic5C20C2×C8D8C2×D4C10C4C22C2C2
# reps1112218224228442244

Matrix representation of D8×Dic5 in GL4(𝔽41) generated by

1000
0100
00017
001217
,
40000
04000
00024
00120
,
354000
1000
00400
00040
,
182000
352300
00320
00032
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,0,12,0,0,17,17],[40,0,0,0,0,40,0,0,0,0,0,12,0,0,24,0],[35,1,0,0,40,0,0,0,0,0,40,0,0,0,0,40],[18,35,0,0,20,23,0,0,0,0,32,0,0,0,0,32] >;

D8×Dic5 in GAP, Magma, Sage, TeX

D_8\times {\rm Dic}_5
% in TeX

G:=Group("D8xDic5");
// GroupNames label

G:=SmallGroup(320,776);
// by ID

G=gap.SmallGroup(320,776);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,219,851,438,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^10=1,d^2=c^5,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽