extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×Dic10)⋊1C2 = C4×C40⋊C2 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):1C2 | 320,318 |
(C4×Dic10)⋊2C2 = C42.16D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):2C2 | 320,337 |
(C4×Dic10)⋊3C2 = C42.274D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):3C2 | 320,1142 |
(C4×Dic10)⋊4C2 = C42.277D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):4C2 | 320,1151 |
(C4×Dic10)⋊5C2 = C42.87D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):5C2 | 320,1188 |
(C4×Dic10)⋊6C2 = C42.88D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):6C2 | 320,1189 |
(C4×Dic10)⋊7C2 = C42.89D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):7C2 | 320,1190 |
(C4×Dic10)⋊8C2 = C42.91D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):8C2 | 320,1195 |
(C4×Dic10)⋊9C2 = C42.93D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):9C2 | 320,1200 |
(C4×Dic10)⋊10C2 = C42.96D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):10C2 | 320,1203 |
(C4×Dic10)⋊11C2 = C42.98D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):11C2 | 320,1205 |
(C4×Dic10)⋊12C2 = C42.99D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):12C2 | 320,1206 |
(C4×Dic10)⋊13C2 = C42.159D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):13C2 | 320,1373 |
(C4×Dic10)⋊14C2 = C42.160D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):14C2 | 320,1374 |
(C4×Dic10)⋊15C2 = C42.162D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):15C2 | 320,1380 |
(C4×Dic10)⋊16C2 = C42.164D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):16C2 | 320,1382 |
(C4×Dic10)⋊17C2 = C42.36D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):17C2 | 320,472 |
(C4×Dic10)⋊18C2 = Dic10⋊8D4 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):18C2 | 320,475 |
(C4×Dic10)⋊19C2 = C4×D4.D5 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):19C2 | 320,644 |
(C4×Dic10)⋊20C2 = C42.51D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):20C2 | 320,645 |
(C4×Dic10)⋊21C2 = C42.61D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):21C2 | 320,681 |
(C4×Dic10)⋊22C2 = Dic10⋊9D4 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):22C2 | 320,702 |
(C4×Dic10)⋊23C2 = C4×D4⋊2D5 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):23C2 | 320,1208 |
(C4×Dic10)⋊24C2 = D4×Dic10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):24C2 | 320,1209 |
(C4×Dic10)⋊25C2 = C42.102D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):25C2 | 320,1210 |
(C4×Dic10)⋊26C2 = D4⋊5Dic10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):26C2 | 320,1211 |
(C4×Dic10)⋊27C2 = C42.105D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):27C2 | 320,1213 |
(C4×Dic10)⋊28C2 = C42.106D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):28C2 | 320,1214 |
(C4×Dic10)⋊29C2 = D4⋊6Dic10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):29C2 | 320,1215 |
(C4×Dic10)⋊30C2 = C42.108D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):30C2 | 320,1218 |
(C4×Dic10)⋊31C2 = Dic10⋊23D4 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):31C2 | 320,1224 |
(C4×Dic10)⋊32C2 = Dic10⋊24D4 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):32C2 | 320,1225 |
(C4×Dic10)⋊33C2 = C42.229D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):33C2 | 320,1229 |
(C4×Dic10)⋊34C2 = C42.114D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):34C2 | 320,1231 |
(C4×Dic10)⋊35C2 = C42.115D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):35C2 | 320,1233 |
(C4×Dic10)⋊36C2 = C42.122D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):36C2 | 320,1240 |
(C4×Dic10)⋊37C2 = C4×Q8×D5 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):37C2 | 320,1243 |
(C4×Dic10)⋊38C2 = C42.125D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):38C2 | 320,1244 |
(C4×Dic10)⋊39C2 = C42.232D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):39C2 | 320,1250 |
(C4×Dic10)⋊40C2 = C42.134D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):40C2 | 320,1255 |
(C4×Dic10)⋊41C2 = C42.135D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):41C2 | 320,1256 |
(C4×Dic10)⋊42C2 = C42.136D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):42C2 | 320,1257 |
(C4×Dic10)⋊43C2 = C42.137D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):43C2 | 320,1341 |
(C4×Dic10)⋊44C2 = C42.139D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):44C2 | 320,1343 |
(C4×Dic10)⋊45C2 = Dic10⋊10D4 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):45C2 | 320,1349 |
(C4×Dic10)⋊46C2 = C42.143D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):46C2 | 320,1353 |
(C4×Dic10)⋊47C2 = D20⋊7Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):47C2 | 320,1362 |
(C4×Dic10)⋊48C2 = C42.152D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):48C2 | 320,1366 |
(C4×Dic10)⋊49C2 = C42.154D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):49C2 | 320,1368 |
(C4×Dic10)⋊50C2 = C42.166D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):50C2 | 320,1385 |
(C4×Dic10)⋊51C2 = Dic10⋊11D4 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):51C2 | 320,1390 |
(C4×Dic10)⋊52C2 = D20⋊8Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):52C2 | 320,1399 |
(C4×Dic10)⋊53C2 = D20⋊9Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):53C2 | 320,1402 |
(C4×Dic10)⋊54C2 = C42.177D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 160 | | (C4xDic10):54C2 | 320,1404 |
(C4×Dic10)⋊55C2 = C4×C4○D20 | φ: trivial image | 160 | | (C4xDic10):55C2 | 320,1146 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×Dic10).1C2 = Dic10⋊3C8 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 320 | | (C4xDic10).1C2 | 320,14 |
(C4×Dic10).2C2 = C40⋊11Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 320 | | (C4xDic10).2C2 | 320,306 |
(C4×Dic10).3C2 = C4×Dic20 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 320 | | (C4xDic10).3C2 | 320,325 |
(C4×Dic10).4C2 = C40⋊Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 320 | | (C4xDic10).4C2 | 320,328 |
(C4×Dic10).5C2 = Dic20⋊9C4 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 320 | | (C4xDic10).5C2 | 320,343 |
(C4×Dic10).6C2 = Dic10⋊4C8 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 320 | | (C4xDic10).6C2 | 320,42 |
(C4×Dic10).7C2 = Dic5.5M4(2) | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 320 | | (C4xDic10).7C2 | 320,455 |
(C4×Dic10).8C2 = Dic10.3Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 320 | | (C4xDic10).8C2 | 320,456 |
(C4×Dic10).9C2 = Dic10⋊5C8 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 320 | | (C4xDic10).9C2 | 320,457 |
(C4×Dic10).10C2 = C42.198D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 320 | | (C4xDic10).10C2 | 320,458 |
(C4×Dic10).11C2 = C4⋊Dic20 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 320 | | (C4xDic10).11C2 | 320,476 |
(C4×Dic10).12C2 = C20.7Q16 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 320 | | (C4xDic10).12C2 | 320,477 |
(C4×Dic10).13C2 = Dic10⋊4Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 320 | | (C4xDic10).13C2 | 320,478 |
(C4×Dic10).14C2 = C4×C5⋊Q16 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 320 | | (C4xDic10).14C2 | 320,656 |
(C4×Dic10).15C2 = C42.59D10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 320 | | (C4xDic10).15C2 | 320,657 |
(C4×Dic10).16C2 = Dic10.4Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 320 | | (C4xDic10).16C2 | 320,690 |
(C4×Dic10).17C2 = C20⋊Q16 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 320 | | (C4xDic10).17C2 | 320,717 |
(C4×Dic10).18C2 = Dic10⋊5Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 320 | | (C4xDic10).18C2 | 320,718 |
(C4×Dic10).19C2 = Dic10⋊6Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 320 | | (C4xDic10).19C2 | 320,721 |
(C4×Dic10).20C2 = Q8×Dic10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 320 | | (C4xDic10).20C2 | 320,1238 |
(C4×Dic10).21C2 = Dic10⋊10Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 320 | | (C4xDic10).21C2 | 320,1239 |
(C4×Dic10).22C2 = Q8⋊5Dic10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 320 | | (C4xDic10).22C2 | 320,1241 |
(C4×Dic10).23C2 = Q8⋊6Dic10 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 320 | | (C4xDic10).23C2 | 320,1242 |
(C4×Dic10).24C2 = Dic10⋊7Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 320 | | (C4xDic10).24C2 | 320,1357 |
(C4×Dic10).25C2 = Dic10⋊8Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 320 | | (C4xDic10).25C2 | 320,1393 |
(C4×Dic10).26C2 = Dic10⋊9Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic10 | 320 | | (C4xDic10).26C2 | 320,1394 |
(C4×Dic10).27C2 = C8×Dic10 | φ: trivial image | 320 | | (C4xDic10).27C2 | 320,305 |