Copied to
clipboard

G = D45Dic10order 320 = 26·5

1st semidirect product of D4 and Dic10 acting through Inn(D4)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D45Dic10, C42.103D10, C10.132+ 1+4, (C5×D4)⋊6Q8, C20⋊Q815C2, C52(D43Q8), (C4×D4).11D5, C20.42(C2×Q8), C4⋊C4.278D10, (D4×C20).12C2, (C4×Dic10)⋊26C2, (C2×D4).242D10, C20.48D47C2, (C2×C10).83C24, C20.6Q814C2, C4.Dic1014C2, (D4×Dic5).12C2, C4.15(C2×Dic10), C10.13(C22×Q8), (C4×C20).146C22, (C2×C20).154C23, C22⋊C4.106D10, (C22×C4).202D10, C4⋊Dic5.37C22, C2.16(D46D10), C22.1(C2×Dic10), Dic5.35(C4○D4), Dic5.14D47C2, C23.D5.8C22, (D4×C10).249C22, (C22×C20).77C22, (C2×Dic5).33C23, (C4×Dic5).80C22, C2.15(C22×Dic10), C23.163(C22×D5), C22.111(C23×D5), (C22×C10).153C23, (C2×Dic10).27C22, C10.D4.108C22, (C22×Dic5).91C22, C2.18(D5×C4○D4), (C2×C10).3(C2×Q8), C10.137(C2×C4○D4), (C2×C10.D4)⋊24C2, (C5×C4⋊C4).319C22, (C2×C4).154(C22×D5), (C5×C22⋊C4).104C22, SmallGroup(320,1211)

Series: Derived Chief Lower central Upper central

C1C2×C10 — D45Dic10
C1C5C10C2×C10C2×Dic5C22×Dic5D4×Dic5 — D45Dic10
C5C2×C10 — D45Dic10
C1C22C4×D4

Generators and relations for D45Dic10
 G = < a,b,c,d | a4=b2=c20=1, d2=c10, bab=cac-1=a-1, ad=da, cbc-1=dbd-1=a2b, dcd-1=c-1 >

Subgroups: 694 in 228 conjugacy classes, 113 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C10, C10, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, Dic5, Dic5, C20, C20, C2×C10, C2×C10, C2×C10, C2×C4⋊C4, C4×D4, C4×D4, C4×Q8, C22⋊Q8, C42.C2, C4⋊Q8, Dic10, C2×Dic5, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C2×C20, C5×D4, C22×C10, D43Q8, C4×Dic5, C10.D4, C10.D4, C4⋊Dic5, C4⋊Dic5, C23.D5, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C2×Dic10, C2×Dic10, C22×Dic5, C22×C20, D4×C10, C4×Dic10, C20.6Q8, Dic5.14D4, C20⋊Q8, C4.Dic10, C2×C10.D4, C20.48D4, D4×Dic5, D4×C20, D45Dic10
Quotients: C1, C2, C22, Q8, C23, D5, C2×Q8, C4○D4, C24, D10, C22×Q8, C2×C4○D4, 2+ 1+4, Dic10, C22×D5, D43Q8, C2×Dic10, C23×D5, C22×Dic10, D46D10, D5×C4○D4, D45Dic10

Smallest permutation representation of D45Dic10
On 160 points
Generators in S160
(1 111 93 136)(2 137 94 112)(3 113 95 138)(4 139 96 114)(5 115 97 140)(6 121 98 116)(7 117 99 122)(8 123 100 118)(9 119 81 124)(10 125 82 120)(11 101 83 126)(12 127 84 102)(13 103 85 128)(14 129 86 104)(15 105 87 130)(16 131 88 106)(17 107 89 132)(18 133 90 108)(19 109 91 134)(20 135 92 110)(21 78 60 159)(22 160 41 79)(23 80 42 141)(24 142 43 61)(25 62 44 143)(26 144 45 63)(27 64 46 145)(28 146 47 65)(29 66 48 147)(30 148 49 67)(31 68 50 149)(32 150 51 69)(33 70 52 151)(34 152 53 71)(35 72 54 153)(36 154 55 73)(37 74 56 155)(38 156 57 75)(39 76 58 157)(40 158 59 77)
(1 101)(2 127)(3 103)(4 129)(5 105)(6 131)(7 107)(8 133)(9 109)(10 135)(11 111)(12 137)(13 113)(14 139)(15 115)(16 121)(17 117)(18 123)(19 119)(20 125)(21 68)(22 150)(23 70)(24 152)(25 72)(26 154)(27 74)(28 156)(29 76)(30 158)(31 78)(32 160)(33 80)(34 142)(35 62)(36 144)(37 64)(38 146)(39 66)(40 148)(41 69)(42 151)(43 71)(44 153)(45 73)(46 155)(47 75)(48 157)(49 77)(50 159)(51 79)(52 141)(53 61)(54 143)(55 63)(56 145)(57 65)(58 147)(59 67)(60 149)(81 134)(82 110)(83 136)(84 112)(85 138)(86 114)(87 140)(88 116)(89 122)(90 118)(91 124)(92 120)(93 126)(94 102)(95 128)(96 104)(97 130)(98 106)(99 132)(100 108)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 156 11 146)(2 155 12 145)(3 154 13 144)(4 153 14 143)(5 152 15 142)(6 151 16 141)(7 150 17 160)(8 149 18 159)(9 148 19 158)(10 147 20 157)(21 123 31 133)(22 122 32 132)(23 121 33 131)(24 140 34 130)(25 139 35 129)(26 138 36 128)(27 137 37 127)(28 136 38 126)(29 135 39 125)(30 134 40 124)(41 117 51 107)(42 116 52 106)(43 115 53 105)(44 114 54 104)(45 113 55 103)(46 112 56 102)(47 111 57 101)(48 110 58 120)(49 109 59 119)(50 108 60 118)(61 97 71 87)(62 96 72 86)(63 95 73 85)(64 94 74 84)(65 93 75 83)(66 92 76 82)(67 91 77 81)(68 90 78 100)(69 89 79 99)(70 88 80 98)

G:=sub<Sym(160)| (1,111,93,136)(2,137,94,112)(3,113,95,138)(4,139,96,114)(5,115,97,140)(6,121,98,116)(7,117,99,122)(8,123,100,118)(9,119,81,124)(10,125,82,120)(11,101,83,126)(12,127,84,102)(13,103,85,128)(14,129,86,104)(15,105,87,130)(16,131,88,106)(17,107,89,132)(18,133,90,108)(19,109,91,134)(20,135,92,110)(21,78,60,159)(22,160,41,79)(23,80,42,141)(24,142,43,61)(25,62,44,143)(26,144,45,63)(27,64,46,145)(28,146,47,65)(29,66,48,147)(30,148,49,67)(31,68,50,149)(32,150,51,69)(33,70,52,151)(34,152,53,71)(35,72,54,153)(36,154,55,73)(37,74,56,155)(38,156,57,75)(39,76,58,157)(40,158,59,77), (1,101)(2,127)(3,103)(4,129)(5,105)(6,131)(7,107)(8,133)(9,109)(10,135)(11,111)(12,137)(13,113)(14,139)(15,115)(16,121)(17,117)(18,123)(19,119)(20,125)(21,68)(22,150)(23,70)(24,152)(25,72)(26,154)(27,74)(28,156)(29,76)(30,158)(31,78)(32,160)(33,80)(34,142)(35,62)(36,144)(37,64)(38,146)(39,66)(40,148)(41,69)(42,151)(43,71)(44,153)(45,73)(46,155)(47,75)(48,157)(49,77)(50,159)(51,79)(52,141)(53,61)(54,143)(55,63)(56,145)(57,65)(58,147)(59,67)(60,149)(81,134)(82,110)(83,136)(84,112)(85,138)(86,114)(87,140)(88,116)(89,122)(90,118)(91,124)(92,120)(93,126)(94,102)(95,128)(96,104)(97,130)(98,106)(99,132)(100,108), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,156,11,146)(2,155,12,145)(3,154,13,144)(4,153,14,143)(5,152,15,142)(6,151,16,141)(7,150,17,160)(8,149,18,159)(9,148,19,158)(10,147,20,157)(21,123,31,133)(22,122,32,132)(23,121,33,131)(24,140,34,130)(25,139,35,129)(26,138,36,128)(27,137,37,127)(28,136,38,126)(29,135,39,125)(30,134,40,124)(41,117,51,107)(42,116,52,106)(43,115,53,105)(44,114,54,104)(45,113,55,103)(46,112,56,102)(47,111,57,101)(48,110,58,120)(49,109,59,119)(50,108,60,118)(61,97,71,87)(62,96,72,86)(63,95,73,85)(64,94,74,84)(65,93,75,83)(66,92,76,82)(67,91,77,81)(68,90,78,100)(69,89,79,99)(70,88,80,98)>;

G:=Group( (1,111,93,136)(2,137,94,112)(3,113,95,138)(4,139,96,114)(5,115,97,140)(6,121,98,116)(7,117,99,122)(8,123,100,118)(9,119,81,124)(10,125,82,120)(11,101,83,126)(12,127,84,102)(13,103,85,128)(14,129,86,104)(15,105,87,130)(16,131,88,106)(17,107,89,132)(18,133,90,108)(19,109,91,134)(20,135,92,110)(21,78,60,159)(22,160,41,79)(23,80,42,141)(24,142,43,61)(25,62,44,143)(26,144,45,63)(27,64,46,145)(28,146,47,65)(29,66,48,147)(30,148,49,67)(31,68,50,149)(32,150,51,69)(33,70,52,151)(34,152,53,71)(35,72,54,153)(36,154,55,73)(37,74,56,155)(38,156,57,75)(39,76,58,157)(40,158,59,77), (1,101)(2,127)(3,103)(4,129)(5,105)(6,131)(7,107)(8,133)(9,109)(10,135)(11,111)(12,137)(13,113)(14,139)(15,115)(16,121)(17,117)(18,123)(19,119)(20,125)(21,68)(22,150)(23,70)(24,152)(25,72)(26,154)(27,74)(28,156)(29,76)(30,158)(31,78)(32,160)(33,80)(34,142)(35,62)(36,144)(37,64)(38,146)(39,66)(40,148)(41,69)(42,151)(43,71)(44,153)(45,73)(46,155)(47,75)(48,157)(49,77)(50,159)(51,79)(52,141)(53,61)(54,143)(55,63)(56,145)(57,65)(58,147)(59,67)(60,149)(81,134)(82,110)(83,136)(84,112)(85,138)(86,114)(87,140)(88,116)(89,122)(90,118)(91,124)(92,120)(93,126)(94,102)(95,128)(96,104)(97,130)(98,106)(99,132)(100,108), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,156,11,146)(2,155,12,145)(3,154,13,144)(4,153,14,143)(5,152,15,142)(6,151,16,141)(7,150,17,160)(8,149,18,159)(9,148,19,158)(10,147,20,157)(21,123,31,133)(22,122,32,132)(23,121,33,131)(24,140,34,130)(25,139,35,129)(26,138,36,128)(27,137,37,127)(28,136,38,126)(29,135,39,125)(30,134,40,124)(41,117,51,107)(42,116,52,106)(43,115,53,105)(44,114,54,104)(45,113,55,103)(46,112,56,102)(47,111,57,101)(48,110,58,120)(49,109,59,119)(50,108,60,118)(61,97,71,87)(62,96,72,86)(63,95,73,85)(64,94,74,84)(65,93,75,83)(66,92,76,82)(67,91,77,81)(68,90,78,100)(69,89,79,99)(70,88,80,98) );

G=PermutationGroup([[(1,111,93,136),(2,137,94,112),(3,113,95,138),(4,139,96,114),(5,115,97,140),(6,121,98,116),(7,117,99,122),(8,123,100,118),(9,119,81,124),(10,125,82,120),(11,101,83,126),(12,127,84,102),(13,103,85,128),(14,129,86,104),(15,105,87,130),(16,131,88,106),(17,107,89,132),(18,133,90,108),(19,109,91,134),(20,135,92,110),(21,78,60,159),(22,160,41,79),(23,80,42,141),(24,142,43,61),(25,62,44,143),(26,144,45,63),(27,64,46,145),(28,146,47,65),(29,66,48,147),(30,148,49,67),(31,68,50,149),(32,150,51,69),(33,70,52,151),(34,152,53,71),(35,72,54,153),(36,154,55,73),(37,74,56,155),(38,156,57,75),(39,76,58,157),(40,158,59,77)], [(1,101),(2,127),(3,103),(4,129),(5,105),(6,131),(7,107),(8,133),(9,109),(10,135),(11,111),(12,137),(13,113),(14,139),(15,115),(16,121),(17,117),(18,123),(19,119),(20,125),(21,68),(22,150),(23,70),(24,152),(25,72),(26,154),(27,74),(28,156),(29,76),(30,158),(31,78),(32,160),(33,80),(34,142),(35,62),(36,144),(37,64),(38,146),(39,66),(40,148),(41,69),(42,151),(43,71),(44,153),(45,73),(46,155),(47,75),(48,157),(49,77),(50,159),(51,79),(52,141),(53,61),(54,143),(55,63),(56,145),(57,65),(58,147),(59,67),(60,149),(81,134),(82,110),(83,136),(84,112),(85,138),(86,114),(87,140),(88,116),(89,122),(90,118),(91,124),(92,120),(93,126),(94,102),(95,128),(96,104),(97,130),(98,106),(99,132),(100,108)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,156,11,146),(2,155,12,145),(3,154,13,144),(4,153,14,143),(5,152,15,142),(6,151,16,141),(7,150,17,160),(8,149,18,159),(9,148,19,158),(10,147,20,157),(21,123,31,133),(22,122,32,132),(23,121,33,131),(24,140,34,130),(25,139,35,129),(26,138,36,128),(27,137,37,127),(28,136,38,126),(29,135,39,125),(30,134,40,124),(41,117,51,107),(42,116,52,106),(43,115,53,105),(44,114,54,104),(45,113,55,103),(46,112,56,102),(47,111,57,101),(48,110,58,120),(49,109,59,119),(50,108,60,118),(61,97,71,87),(62,96,72,86),(63,95,73,85),(64,94,74,84),(65,93,75,83),(66,92,76,82),(67,91,77,81),(68,90,78,100),(69,89,79,99),(70,88,80,98)]])

65 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L···4Q5A5B10A···10F10G···10N20A···20H20I···20X
order12222222444444444444···45510···1010···1020···2020···20
size1111222222224441010101020···20222···24···42···24···4

65 irreducible representations

dim1111111111222222222444
type++++++++++-++++++-+
imageC1C2C2C2C2C2C2C2C2C2Q8D5C4○D4D10D10D10D10D10Dic102+ 1+4D46D10D5×C4○D4
kernelD45Dic10C4×Dic10C20.6Q8Dic5.14D4C20⋊Q8C4.Dic10C2×C10.D4C20.48D4D4×Dic5D4×C20C5×D4C4×D4Dic5C42C22⋊C4C4⋊C4C22×C4C2×D4D4C10C2C2
# reps11141122214242424216144

Matrix representation of D45Dic10 in GL6(𝔽41)

4000000
0400000
001000
000100
0000121
00003740
,
100000
010000
001000
000100
0000121
0000040
,
34310000
570000
0014000
0083400
0000320
0000369
,
40110000
1110000
003500
00233800
0000121
00003740

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,37,0,0,0,0,21,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,21,40],[34,5,0,0,0,0,31,7,0,0,0,0,0,0,1,8,0,0,0,0,40,34,0,0,0,0,0,0,32,36,0,0,0,0,0,9],[40,11,0,0,0,0,11,1,0,0,0,0,0,0,3,23,0,0,0,0,5,38,0,0,0,0,0,0,1,37,0,0,0,0,21,40] >;

D45Dic10 in GAP, Magma, Sage, TeX

D_4\rtimes_5{\rm Dic}_{10}
% in TeX

G:=Group("D4:5Dic10");
// GroupNames label

G:=SmallGroup(320,1211);
// by ID

G=gap.SmallGroup(320,1211);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,387,675,192,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^20=1,d^2=c^10,b*a*b=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=d*b*d^-1=a^2*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽