Copied to
clipboard

G = D46Dic10order 320 = 26·5

2nd semidirect product of D4 and Dic10 acting through Inn(D4)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D46Dic10, C42.107D10, C10.1012+ 1+4, (C5×D4)⋊7Q8, (C4×D4).14D5, C53(D43Q8), C20.43(C2×Q8), C4⋊C4.281D10, C202Q823C2, (D4×C20).15C2, (C4×Dic10)⋊29C2, (C2×D4).243D10, C20.48D49C2, (C2×C10).87C24, C4.Dic1015C2, (D4×Dic5).13C2, C4.16(C2×Dic10), C20.292(C4○D4), C10.14(C22×Q8), (C2×C20).156C23, (C4×C20).149C22, C22⋊C4.108D10, (C22×C4).206D10, C4.117(D42D5), C2.13(D48D10), C22.2(C2×Dic10), Dic5.14D48C2, (D4×C10).251C22, C4⋊Dic5.198C22, (C22×C20).80C22, (C4×Dic5).82C22, (C2×Dic5).37C23, C2.16(C22×Dic10), C10.D4.6C22, C23.166(C22×D5), C22.115(C23×D5), C23.D5.10C22, (C22×C10).157C23, (C2×Dic10).28C22, (C22×Dic5).94C22, (C2×C10).4(C2×Q8), (C2×C4⋊Dic5)⋊24C2, C10.73(C2×C4○D4), C2.21(C2×D42D5), (C5×C4⋊C4).323C22, (C2×C4).731(C22×D5), (C5×C22⋊C4).105C22, SmallGroup(320,1215)

Series: Derived Chief Lower central Upper central

C1C2×C10 — D46Dic10
C1C5C10C2×C10C2×Dic5C22×Dic5D4×Dic5 — D46Dic10
C5C2×C10 — D46Dic10
C1C22C4×D4

Generators and relations for D46Dic10
 G = < a,b,c,d | a4=b2=c20=1, d2=c10, bab=a-1, ac=ca, ad=da, bc=cb, dbd-1=a2b, dcd-1=c-1 >

Subgroups: 694 in 228 conjugacy classes, 115 normal (29 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C10, C10, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, Dic5, C20, C20, C2×C10, C2×C10, C2×C10, C2×C4⋊C4, C4×D4, C4×D4, C4×Q8, C22⋊Q8, C42.C2, C4⋊Q8, Dic10, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C2×C20, C5×D4, C22×C10, D43Q8, C4×Dic5, C10.D4, C4⋊Dic5, C4⋊Dic5, C23.D5, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C2×Dic10, C2×Dic10, C22×Dic5, C22×C20, D4×C10, C4×Dic10, C202Q8, Dic5.14D4, C4.Dic10, C20.48D4, C2×C4⋊Dic5, D4×Dic5, D4×C20, D46Dic10
Quotients: C1, C2, C22, Q8, C23, D5, C2×Q8, C4○D4, C24, D10, C22×Q8, C2×C4○D4, 2+ 1+4, Dic10, C22×D5, D43Q8, C2×Dic10, D42D5, C23×D5, C22×Dic10, C2×D42D5, D48D10, D46Dic10

Smallest permutation representation of D46Dic10
On 160 points
Generators in S160
(1 21 88 47)(2 22 89 48)(3 23 90 49)(4 24 91 50)(5 25 92 51)(6 26 93 52)(7 27 94 53)(8 28 95 54)(9 29 96 55)(10 30 97 56)(11 31 98 57)(12 32 99 58)(13 33 100 59)(14 34 81 60)(15 35 82 41)(16 36 83 42)(17 37 84 43)(18 38 85 44)(19 39 86 45)(20 40 87 46)(61 126 144 115)(62 127 145 116)(63 128 146 117)(64 129 147 118)(65 130 148 119)(66 131 149 120)(67 132 150 101)(68 133 151 102)(69 134 152 103)(70 135 153 104)(71 136 154 105)(72 137 155 106)(73 138 156 107)(74 139 157 108)(75 140 158 109)(76 121 159 110)(77 122 160 111)(78 123 141 112)(79 124 142 113)(80 125 143 114)
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 37)(8 38)(9 39)(10 40)(11 21)(12 22)(13 23)(14 24)(15 25)(16 26)(17 27)(18 28)(19 29)(20 30)(41 92)(42 93)(43 94)(44 95)(45 96)(46 97)(47 98)(48 99)(49 100)(50 81)(51 82)(52 83)(53 84)(54 85)(55 86)(56 87)(57 88)(58 89)(59 90)(60 91)(61 105)(62 106)(63 107)(64 108)(65 109)(66 110)(67 111)(68 112)(69 113)(70 114)(71 115)(72 116)(73 117)(74 118)(75 119)(76 120)(77 101)(78 102)(79 103)(80 104)(121 149)(122 150)(123 151)(124 152)(125 153)(126 154)(127 155)(128 156)(129 157)(130 158)(131 159)(132 160)(133 141)(134 142)(135 143)(136 144)(137 145)(138 146)(139 147)(140 148)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 150 11 160)(2 149 12 159)(3 148 13 158)(4 147 14 157)(5 146 15 156)(6 145 16 155)(7 144 17 154)(8 143 18 153)(9 142 19 152)(10 141 20 151)(21 101 31 111)(22 120 32 110)(23 119 33 109)(24 118 34 108)(25 117 35 107)(26 116 36 106)(27 115 37 105)(28 114 38 104)(29 113 39 103)(30 112 40 102)(41 138 51 128)(42 137 52 127)(43 136 53 126)(44 135 54 125)(45 134 55 124)(46 133 56 123)(47 132 57 122)(48 131 58 121)(49 130 59 140)(50 129 60 139)(61 84 71 94)(62 83 72 93)(63 82 73 92)(64 81 74 91)(65 100 75 90)(66 99 76 89)(67 98 77 88)(68 97 78 87)(69 96 79 86)(70 95 80 85)

G:=sub<Sym(160)| (1,21,88,47)(2,22,89,48)(3,23,90,49)(4,24,91,50)(5,25,92,51)(6,26,93,52)(7,27,94,53)(8,28,95,54)(9,29,96,55)(10,30,97,56)(11,31,98,57)(12,32,99,58)(13,33,100,59)(14,34,81,60)(15,35,82,41)(16,36,83,42)(17,37,84,43)(18,38,85,44)(19,39,86,45)(20,40,87,46)(61,126,144,115)(62,127,145,116)(63,128,146,117)(64,129,147,118)(65,130,148,119)(66,131,149,120)(67,132,150,101)(68,133,151,102)(69,134,152,103)(70,135,153,104)(71,136,154,105)(72,137,155,106)(73,138,156,107)(74,139,157,108)(75,140,158,109)(76,121,159,110)(77,122,160,111)(78,123,141,112)(79,124,142,113)(80,125,143,114), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(41,92)(42,93)(43,94)(44,95)(45,96)(46,97)(47,98)(48,99)(49,100)(50,81)(51,82)(52,83)(53,84)(54,85)(55,86)(56,87)(57,88)(58,89)(59,90)(60,91)(61,105)(62,106)(63,107)(64,108)(65,109)(66,110)(67,111)(68,112)(69,113)(70,114)(71,115)(72,116)(73,117)(74,118)(75,119)(76,120)(77,101)(78,102)(79,103)(80,104)(121,149)(122,150)(123,151)(124,152)(125,153)(126,154)(127,155)(128,156)(129,157)(130,158)(131,159)(132,160)(133,141)(134,142)(135,143)(136,144)(137,145)(138,146)(139,147)(140,148), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,150,11,160)(2,149,12,159)(3,148,13,158)(4,147,14,157)(5,146,15,156)(6,145,16,155)(7,144,17,154)(8,143,18,153)(9,142,19,152)(10,141,20,151)(21,101,31,111)(22,120,32,110)(23,119,33,109)(24,118,34,108)(25,117,35,107)(26,116,36,106)(27,115,37,105)(28,114,38,104)(29,113,39,103)(30,112,40,102)(41,138,51,128)(42,137,52,127)(43,136,53,126)(44,135,54,125)(45,134,55,124)(46,133,56,123)(47,132,57,122)(48,131,58,121)(49,130,59,140)(50,129,60,139)(61,84,71,94)(62,83,72,93)(63,82,73,92)(64,81,74,91)(65,100,75,90)(66,99,76,89)(67,98,77,88)(68,97,78,87)(69,96,79,86)(70,95,80,85)>;

G:=Group( (1,21,88,47)(2,22,89,48)(3,23,90,49)(4,24,91,50)(5,25,92,51)(6,26,93,52)(7,27,94,53)(8,28,95,54)(9,29,96,55)(10,30,97,56)(11,31,98,57)(12,32,99,58)(13,33,100,59)(14,34,81,60)(15,35,82,41)(16,36,83,42)(17,37,84,43)(18,38,85,44)(19,39,86,45)(20,40,87,46)(61,126,144,115)(62,127,145,116)(63,128,146,117)(64,129,147,118)(65,130,148,119)(66,131,149,120)(67,132,150,101)(68,133,151,102)(69,134,152,103)(70,135,153,104)(71,136,154,105)(72,137,155,106)(73,138,156,107)(74,139,157,108)(75,140,158,109)(76,121,159,110)(77,122,160,111)(78,123,141,112)(79,124,142,113)(80,125,143,114), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(41,92)(42,93)(43,94)(44,95)(45,96)(46,97)(47,98)(48,99)(49,100)(50,81)(51,82)(52,83)(53,84)(54,85)(55,86)(56,87)(57,88)(58,89)(59,90)(60,91)(61,105)(62,106)(63,107)(64,108)(65,109)(66,110)(67,111)(68,112)(69,113)(70,114)(71,115)(72,116)(73,117)(74,118)(75,119)(76,120)(77,101)(78,102)(79,103)(80,104)(121,149)(122,150)(123,151)(124,152)(125,153)(126,154)(127,155)(128,156)(129,157)(130,158)(131,159)(132,160)(133,141)(134,142)(135,143)(136,144)(137,145)(138,146)(139,147)(140,148), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,150,11,160)(2,149,12,159)(3,148,13,158)(4,147,14,157)(5,146,15,156)(6,145,16,155)(7,144,17,154)(8,143,18,153)(9,142,19,152)(10,141,20,151)(21,101,31,111)(22,120,32,110)(23,119,33,109)(24,118,34,108)(25,117,35,107)(26,116,36,106)(27,115,37,105)(28,114,38,104)(29,113,39,103)(30,112,40,102)(41,138,51,128)(42,137,52,127)(43,136,53,126)(44,135,54,125)(45,134,55,124)(46,133,56,123)(47,132,57,122)(48,131,58,121)(49,130,59,140)(50,129,60,139)(61,84,71,94)(62,83,72,93)(63,82,73,92)(64,81,74,91)(65,100,75,90)(66,99,76,89)(67,98,77,88)(68,97,78,87)(69,96,79,86)(70,95,80,85) );

G=PermutationGroup([[(1,21,88,47),(2,22,89,48),(3,23,90,49),(4,24,91,50),(5,25,92,51),(6,26,93,52),(7,27,94,53),(8,28,95,54),(9,29,96,55),(10,30,97,56),(11,31,98,57),(12,32,99,58),(13,33,100,59),(14,34,81,60),(15,35,82,41),(16,36,83,42),(17,37,84,43),(18,38,85,44),(19,39,86,45),(20,40,87,46),(61,126,144,115),(62,127,145,116),(63,128,146,117),(64,129,147,118),(65,130,148,119),(66,131,149,120),(67,132,150,101),(68,133,151,102),(69,134,152,103),(70,135,153,104),(71,136,154,105),(72,137,155,106),(73,138,156,107),(74,139,157,108),(75,140,158,109),(76,121,159,110),(77,122,160,111),(78,123,141,112),(79,124,142,113),(80,125,143,114)], [(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,37),(8,38),(9,39),(10,40),(11,21),(12,22),(13,23),(14,24),(15,25),(16,26),(17,27),(18,28),(19,29),(20,30),(41,92),(42,93),(43,94),(44,95),(45,96),(46,97),(47,98),(48,99),(49,100),(50,81),(51,82),(52,83),(53,84),(54,85),(55,86),(56,87),(57,88),(58,89),(59,90),(60,91),(61,105),(62,106),(63,107),(64,108),(65,109),(66,110),(67,111),(68,112),(69,113),(70,114),(71,115),(72,116),(73,117),(74,118),(75,119),(76,120),(77,101),(78,102),(79,103),(80,104),(121,149),(122,150),(123,151),(124,152),(125,153),(126,154),(127,155),(128,156),(129,157),(130,158),(131,159),(132,160),(133,141),(134,142),(135,143),(136,144),(137,145),(138,146),(139,147),(140,148)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,150,11,160),(2,149,12,159),(3,148,13,158),(4,147,14,157),(5,146,15,156),(6,145,16,155),(7,144,17,154),(8,143,18,153),(9,142,19,152),(10,141,20,151),(21,101,31,111),(22,120,32,110),(23,119,33,109),(24,118,34,108),(25,117,35,107),(26,116,36,106),(27,115,37,105),(28,114,38,104),(29,113,39,103),(30,112,40,102),(41,138,51,128),(42,137,52,127),(43,136,53,126),(44,135,54,125),(45,134,55,124),(46,133,56,123),(47,132,57,122),(48,131,58,121),(49,130,59,140),(50,129,60,139),(61,84,71,94),(62,83,72,93),(63,82,73,92),(64,81,74,91),(65,100,75,90),(66,99,76,89),(67,98,77,88),(68,97,78,87),(69,96,79,86),(70,95,80,85)]])

65 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L···4Q5A5B10A···10F10G···10N20A···20H20I···20X
order12222222444444444444···45510···1010···1020···2020···20
size1111222222224441010101020···20222···24···42···24···4

65 irreducible representations

dim111111111222222222444
type+++++++++-++++++-+-+
imageC1C2C2C2C2C2C2C2C2Q8D5C4○D4D10D10D10D10D10Dic102+ 1+4D42D5D48D10
kernelD46Dic10C4×Dic10C202Q8Dic5.14D4C4.Dic10C20.48D4C2×C4⋊Dic5D4×Dic5D4×C20C5×D4C4×D4C20C42C22⋊C4C4⋊C4C22×C4C2×D4D4C10C4C2
# reps1114222214242424216144

Matrix representation of D46Dic10 in GL6(𝔽41)

4000000
0400000
0040000
0004000
00004039
000011
,
4000000
0400000
001000
000100
000012
0000040
,
34400000
810000
0040500
0016100
0000400
0000040
,
35120000
2160000
0071200
00303400
0000918
00003232

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,1,0,0,0,0,39,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,2,40],[34,8,0,0,0,0,40,1,0,0,0,0,0,0,40,16,0,0,0,0,5,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[35,21,0,0,0,0,12,6,0,0,0,0,0,0,7,30,0,0,0,0,12,34,0,0,0,0,0,0,9,32,0,0,0,0,18,32] >;

D46Dic10 in GAP, Magma, Sage, TeX

D_4\rtimes_6{\rm Dic}_{10}
% in TeX

G:=Group("D4:6Dic10");
// GroupNames label

G:=SmallGroup(320,1215);
// by ID

G=gap.SmallGroup(320,1215);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,387,1571,192,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^20=1,d^2=c^10,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=a^2*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽