Copied to
clipboard

G = D207Q8order 320 = 26·5

5th semidirect product of D20 and Q8 acting via Q8/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D207Q8, C42.149D10, C10.1312+ 1+4, C20⋊Q836C2, C4.16(Q8×D5), C57(D43Q8), C42.C25D5, C20.51(C2×Q8), C4⋊C4.205D10, (C4×D20).24C2, D10.23(C2×Q8), D10⋊Q834C2, D102Q835C2, (C4×Dic10)⋊47C2, (C2×C20).88C23, C4.Dic1034C2, D208C4.11C2, C10.43(C22×Q8), (C2×C10).234C24, (C4×C20).194C22, C2.56(D48D10), Dic5.45(C4○D4), (C2×D20).275C22, C4⋊Dic5.379C22, C22.255(C23×D5), D10⋊C4.40C22, (C2×Dic5).122C23, (C4×Dic5).149C22, (C22×D5).231C23, (C2×Dic10).259C22, C10.D4.144C22, (D5×C4⋊C4)⋊35C2, C2.26(C2×Q8×D5), C2.85(D5×C4○D4), (C5×C42.C2)⋊7C2, C10.196(C2×C4○D4), (C2×C4×D5).268C22, (C2×C4).78(C22×D5), (C5×C4⋊C4).189C22, SmallGroup(320,1362)

Series: Derived Chief Lower central Upper central

C1C2×C10 — D207Q8
C1C5C10C2×C10C22×D5C2×C4×D5D5×C4⋊C4 — D207Q8
C5C2×C10 — D207Q8
C1C22C42.C2

Generators and relations for D207Q8
 G = < a,b,c,d | a20=b2=c4=1, d2=c2, bab=a-1, ac=ca, dad-1=a9, cbc-1=a10b, dbd-1=a18b, dcd-1=c-1 >

Subgroups: 806 in 228 conjugacy classes, 105 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C2×C4⋊C4, C4×D4, C4×Q8, C22⋊Q8, C42.C2, C42.C2, C4⋊Q8, Dic10, C4×D5, D20, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×D5, D43Q8, C4×Dic5, C10.D4, C10.D4, C4⋊Dic5, C4⋊Dic5, D10⋊C4, C4×C20, C5×C4⋊C4, C5×C4⋊C4, C2×Dic10, C2×Dic10, C2×C4×D5, C2×D20, C4×Dic10, C4×D20, C20⋊Q8, C4.Dic10, D5×C4⋊C4, D208C4, D10⋊Q8, D102Q8, C5×C42.C2, D207Q8
Quotients: C1, C2, C22, Q8, C23, D5, C2×Q8, C4○D4, C24, D10, C22×Q8, C2×C4○D4, 2+ 1+4, C22×D5, D43Q8, Q8×D5, C23×D5, C2×Q8×D5, D5×C4○D4, D48D10, D207Q8

Smallest permutation representation of D207Q8
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 74)(2 73)(3 72)(4 71)(5 70)(6 69)(7 68)(8 67)(9 66)(10 65)(11 64)(12 63)(13 62)(14 61)(15 80)(16 79)(17 78)(18 77)(19 76)(20 75)(21 97)(22 96)(23 95)(24 94)(25 93)(26 92)(27 91)(28 90)(29 89)(30 88)(31 87)(32 86)(33 85)(34 84)(35 83)(36 82)(37 81)(38 100)(39 99)(40 98)(41 128)(42 127)(43 126)(44 125)(45 124)(46 123)(47 122)(48 121)(49 140)(50 139)(51 138)(52 137)(53 136)(54 135)(55 134)(56 133)(57 132)(58 131)(59 130)(60 129)(101 156)(102 155)(103 154)(104 153)(105 152)(106 151)(107 150)(108 149)(109 148)(110 147)(111 146)(112 145)(113 144)(114 143)(115 142)(116 141)(117 160)(118 159)(119 158)(120 157)
(1 135 70 60)(2 136 71 41)(3 137 72 42)(4 138 73 43)(5 139 74 44)(6 140 75 45)(7 121 76 46)(8 122 77 47)(9 123 78 48)(10 124 79 49)(11 125 80 50)(12 126 61 51)(13 127 62 52)(14 128 63 53)(15 129 64 54)(16 130 65 55)(17 131 66 56)(18 132 67 57)(19 133 68 58)(20 134 69 59)(21 101 93 142)(22 102 94 143)(23 103 95 144)(24 104 96 145)(25 105 97 146)(26 106 98 147)(27 107 99 148)(28 108 100 149)(29 109 81 150)(30 110 82 151)(31 111 83 152)(32 112 84 153)(33 113 85 154)(34 114 86 155)(35 115 87 156)(36 116 88 157)(37 117 89 158)(38 118 90 159)(39 119 91 160)(40 120 92 141)
(1 88 70 36)(2 97 71 25)(3 86 72 34)(4 95 73 23)(5 84 74 32)(6 93 75 21)(7 82 76 30)(8 91 77 39)(9 100 78 28)(10 89 79 37)(11 98 80 26)(12 87 61 35)(13 96 62 24)(14 85 63 33)(15 94 64 22)(16 83 65 31)(17 92 66 40)(18 81 67 29)(19 90 68 38)(20 99 69 27)(41 146 136 105)(42 155 137 114)(43 144 138 103)(44 153 139 112)(45 142 140 101)(46 151 121 110)(47 160 122 119)(48 149 123 108)(49 158 124 117)(50 147 125 106)(51 156 126 115)(52 145 127 104)(53 154 128 113)(54 143 129 102)(55 152 130 111)(56 141 131 120)(57 150 132 109)(58 159 133 118)(59 148 134 107)(60 157 135 116)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,74)(2,73)(3,72)(4,71)(5,70)(6,69)(7,68)(8,67)(9,66)(10,65)(11,64)(12,63)(13,62)(14,61)(15,80)(16,79)(17,78)(18,77)(19,76)(20,75)(21,97)(22,96)(23,95)(24,94)(25,93)(26,92)(27,91)(28,90)(29,89)(30,88)(31,87)(32,86)(33,85)(34,84)(35,83)(36,82)(37,81)(38,100)(39,99)(40,98)(41,128)(42,127)(43,126)(44,125)(45,124)(46,123)(47,122)(48,121)(49,140)(50,139)(51,138)(52,137)(53,136)(54,135)(55,134)(56,133)(57,132)(58,131)(59,130)(60,129)(101,156)(102,155)(103,154)(104,153)(105,152)(106,151)(107,150)(108,149)(109,148)(110,147)(111,146)(112,145)(113,144)(114,143)(115,142)(116,141)(117,160)(118,159)(119,158)(120,157), (1,135,70,60)(2,136,71,41)(3,137,72,42)(4,138,73,43)(5,139,74,44)(6,140,75,45)(7,121,76,46)(8,122,77,47)(9,123,78,48)(10,124,79,49)(11,125,80,50)(12,126,61,51)(13,127,62,52)(14,128,63,53)(15,129,64,54)(16,130,65,55)(17,131,66,56)(18,132,67,57)(19,133,68,58)(20,134,69,59)(21,101,93,142)(22,102,94,143)(23,103,95,144)(24,104,96,145)(25,105,97,146)(26,106,98,147)(27,107,99,148)(28,108,100,149)(29,109,81,150)(30,110,82,151)(31,111,83,152)(32,112,84,153)(33,113,85,154)(34,114,86,155)(35,115,87,156)(36,116,88,157)(37,117,89,158)(38,118,90,159)(39,119,91,160)(40,120,92,141), (1,88,70,36)(2,97,71,25)(3,86,72,34)(4,95,73,23)(5,84,74,32)(6,93,75,21)(7,82,76,30)(8,91,77,39)(9,100,78,28)(10,89,79,37)(11,98,80,26)(12,87,61,35)(13,96,62,24)(14,85,63,33)(15,94,64,22)(16,83,65,31)(17,92,66,40)(18,81,67,29)(19,90,68,38)(20,99,69,27)(41,146,136,105)(42,155,137,114)(43,144,138,103)(44,153,139,112)(45,142,140,101)(46,151,121,110)(47,160,122,119)(48,149,123,108)(49,158,124,117)(50,147,125,106)(51,156,126,115)(52,145,127,104)(53,154,128,113)(54,143,129,102)(55,152,130,111)(56,141,131,120)(57,150,132,109)(58,159,133,118)(59,148,134,107)(60,157,135,116)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,74)(2,73)(3,72)(4,71)(5,70)(6,69)(7,68)(8,67)(9,66)(10,65)(11,64)(12,63)(13,62)(14,61)(15,80)(16,79)(17,78)(18,77)(19,76)(20,75)(21,97)(22,96)(23,95)(24,94)(25,93)(26,92)(27,91)(28,90)(29,89)(30,88)(31,87)(32,86)(33,85)(34,84)(35,83)(36,82)(37,81)(38,100)(39,99)(40,98)(41,128)(42,127)(43,126)(44,125)(45,124)(46,123)(47,122)(48,121)(49,140)(50,139)(51,138)(52,137)(53,136)(54,135)(55,134)(56,133)(57,132)(58,131)(59,130)(60,129)(101,156)(102,155)(103,154)(104,153)(105,152)(106,151)(107,150)(108,149)(109,148)(110,147)(111,146)(112,145)(113,144)(114,143)(115,142)(116,141)(117,160)(118,159)(119,158)(120,157), (1,135,70,60)(2,136,71,41)(3,137,72,42)(4,138,73,43)(5,139,74,44)(6,140,75,45)(7,121,76,46)(8,122,77,47)(9,123,78,48)(10,124,79,49)(11,125,80,50)(12,126,61,51)(13,127,62,52)(14,128,63,53)(15,129,64,54)(16,130,65,55)(17,131,66,56)(18,132,67,57)(19,133,68,58)(20,134,69,59)(21,101,93,142)(22,102,94,143)(23,103,95,144)(24,104,96,145)(25,105,97,146)(26,106,98,147)(27,107,99,148)(28,108,100,149)(29,109,81,150)(30,110,82,151)(31,111,83,152)(32,112,84,153)(33,113,85,154)(34,114,86,155)(35,115,87,156)(36,116,88,157)(37,117,89,158)(38,118,90,159)(39,119,91,160)(40,120,92,141), (1,88,70,36)(2,97,71,25)(3,86,72,34)(4,95,73,23)(5,84,74,32)(6,93,75,21)(7,82,76,30)(8,91,77,39)(9,100,78,28)(10,89,79,37)(11,98,80,26)(12,87,61,35)(13,96,62,24)(14,85,63,33)(15,94,64,22)(16,83,65,31)(17,92,66,40)(18,81,67,29)(19,90,68,38)(20,99,69,27)(41,146,136,105)(42,155,137,114)(43,144,138,103)(44,153,139,112)(45,142,140,101)(46,151,121,110)(47,160,122,119)(48,149,123,108)(49,158,124,117)(50,147,125,106)(51,156,126,115)(52,145,127,104)(53,154,128,113)(54,143,129,102)(55,152,130,111)(56,141,131,120)(57,150,132,109)(58,159,133,118)(59,148,134,107)(60,157,135,116) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,74),(2,73),(3,72),(4,71),(5,70),(6,69),(7,68),(8,67),(9,66),(10,65),(11,64),(12,63),(13,62),(14,61),(15,80),(16,79),(17,78),(18,77),(19,76),(20,75),(21,97),(22,96),(23,95),(24,94),(25,93),(26,92),(27,91),(28,90),(29,89),(30,88),(31,87),(32,86),(33,85),(34,84),(35,83),(36,82),(37,81),(38,100),(39,99),(40,98),(41,128),(42,127),(43,126),(44,125),(45,124),(46,123),(47,122),(48,121),(49,140),(50,139),(51,138),(52,137),(53,136),(54,135),(55,134),(56,133),(57,132),(58,131),(59,130),(60,129),(101,156),(102,155),(103,154),(104,153),(105,152),(106,151),(107,150),(108,149),(109,148),(110,147),(111,146),(112,145),(113,144),(114,143),(115,142),(116,141),(117,160),(118,159),(119,158),(120,157)], [(1,135,70,60),(2,136,71,41),(3,137,72,42),(4,138,73,43),(5,139,74,44),(6,140,75,45),(7,121,76,46),(8,122,77,47),(9,123,78,48),(10,124,79,49),(11,125,80,50),(12,126,61,51),(13,127,62,52),(14,128,63,53),(15,129,64,54),(16,130,65,55),(17,131,66,56),(18,132,67,57),(19,133,68,58),(20,134,69,59),(21,101,93,142),(22,102,94,143),(23,103,95,144),(24,104,96,145),(25,105,97,146),(26,106,98,147),(27,107,99,148),(28,108,100,149),(29,109,81,150),(30,110,82,151),(31,111,83,152),(32,112,84,153),(33,113,85,154),(34,114,86,155),(35,115,87,156),(36,116,88,157),(37,117,89,158),(38,118,90,159),(39,119,91,160),(40,120,92,141)], [(1,88,70,36),(2,97,71,25),(3,86,72,34),(4,95,73,23),(5,84,74,32),(6,93,75,21),(7,82,76,30),(8,91,77,39),(9,100,78,28),(10,89,79,37),(11,98,80,26),(12,87,61,35),(13,96,62,24),(14,85,63,33),(15,94,64,22),(16,83,65,31),(17,92,66,40),(18,81,67,29),(19,90,68,38),(20,99,69,27),(41,146,136,105),(42,155,137,114),(43,144,138,103),(44,153,139,112),(45,142,140,101),(46,151,121,110),(47,160,122,119),(48,149,123,108),(49,158,124,117),(50,147,125,106),(51,156,126,115),(52,145,127,104),(53,154,128,113),(54,143,129,102),(55,152,130,111),(56,141,131,120),(57,150,132,109),(58,159,133,118),(59,148,134,107),(60,157,135,116)]])

53 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E···4I4J4K4L4M4N4O4P4Q5A5B10A···10F20A···20L20M···20T
order1222222244444···4444444445510···1020···2020···20
size11111010101022224···41010101020202020222···24···48···8

53 irreducible representations

dim1111111111222224444
type++++++++++-++++-+
imageC1C2C2C2C2C2C2C2C2C2Q8D5C4○D4D10D102+ 1+4Q8×D5D5×C4○D4D48D10
kernelD207Q8C4×Dic10C4×D20C20⋊Q8C4.Dic10D5×C4⋊C4D208C4D10⋊Q8D102Q8C5×C42.C2D20C42.C2Dic5C42C4⋊C4C10C4C2C2
# reps11111224214242121444

Matrix representation of D207Q8 in GL6(𝔽41)

3410000
4000000
0003200
0032000
000010
000001
,
1340000
0400000
0040000
000100
0000400
0000040
,
4000000
0400000
0004000
0040000
0000139
0000140
,
3470000
4070000
0004000
0040000
0000713
00003434

G:=sub<GL(6,GF(41))| [34,40,0,0,0,0,1,0,0,0,0,0,0,0,0,32,0,0,0,0,32,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,34,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,40,0,0,0,0,0,0,0,1,1,0,0,0,0,39,40],[34,40,0,0,0,0,7,7,0,0,0,0,0,0,0,40,0,0,0,0,40,0,0,0,0,0,0,0,7,34,0,0,0,0,13,34] >;

D207Q8 in GAP, Magma, Sage, TeX

D_{20}\rtimes_7Q_8
% in TeX

G:=Group("D20:7Q8");
// GroupNames label

G:=SmallGroup(320,1362);
// by ID

G=gap.SmallGroup(320,1362);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,219,184,1571,297,80,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^2=c^4=1,d^2=c^2,b*a*b=a^-1,a*c=c*a,d*a*d^-1=a^9,c*b*c^-1=a^10*b,d*b*d^-1=a^18*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽