Extensions 1→N→G→Q→1 with N=C6 and Q=C2×C28

Direct product G=N×Q with N=C6 and Q=C2×C28
dρLabelID
C22×C84336C2^2xC84336,204

Semidirect products G=N:Q with N=C6 and Q=C2×C28
extensionφ:Q→Aut NdρLabelID
C61(C2×C28) = S3×C2×C28φ: C2×C28/C28C2 ⊆ Aut C6168C6:1(C2xC28)336,185
C62(C2×C28) = Dic3×C2×C14φ: C2×C28/C2×C14C2 ⊆ Aut C6336C6:2(C2xC28)336,192

Non-split extensions G=N.Q with N=C6 and Q=C2×C28
extensionφ:Q→Aut NdρLabelID
C6.1(C2×C28) = S3×C56φ: C2×C28/C28C2 ⊆ Aut C61682C6.1(C2xC28)336,74
C6.2(C2×C28) = C7×C8⋊S3φ: C2×C28/C28C2 ⊆ Aut C61682C6.2(C2xC28)336,75
C6.3(C2×C28) = C7×Dic3⋊C4φ: C2×C28/C28C2 ⊆ Aut C6336C6.3(C2xC28)336,82
C6.4(C2×C28) = C7×D6⋊C4φ: C2×C28/C28C2 ⊆ Aut C6168C6.4(C2xC28)336,84
C6.5(C2×C28) = C14×C3⋊C8φ: C2×C28/C2×C14C2 ⊆ Aut C6336C6.5(C2xC28)336,79
C6.6(C2×C28) = C7×C4.Dic3φ: C2×C28/C2×C14C2 ⊆ Aut C61682C6.6(C2xC28)336,80
C6.7(C2×C28) = Dic3×C28φ: C2×C28/C2×C14C2 ⊆ Aut C6336C6.7(C2xC28)336,81
C6.8(C2×C28) = C7×C4⋊Dic3φ: C2×C28/C2×C14C2 ⊆ Aut C6336C6.8(C2xC28)336,83
C6.9(C2×C28) = C7×C6.D4φ: C2×C28/C2×C14C2 ⊆ Aut C6168C6.9(C2xC28)336,89
C6.10(C2×C28) = C22⋊C4×C21central extension (φ=1)168C6.10(C2xC28)336,107
C6.11(C2×C28) = C4⋊C4×C21central extension (φ=1)336C6.11(C2xC28)336,108
C6.12(C2×C28) = M4(2)×C21central extension (φ=1)1682C6.12(C2xC28)336,110

׿
×
𝔽