Extensions 1→N→G→Q→1 with N=S3×C14 and Q=C4

Direct product G=N×Q with N=S3×C14 and Q=C4
dρLabelID
S3×C2×C28168S3xC2xC28336,185

Semidirect products G=N:Q with N=S3×C14 and Q=C4
extensionφ:Q→Out NdρLabelID
(S3×C14)⋊1C4 = D6⋊Dic7φ: C4/C2C2 ⊆ Out S3×C14168(S3xC14):1C4336,43
(S3×C14)⋊2C4 = C2×S3×Dic7φ: C4/C2C2 ⊆ Out S3×C14168(S3xC14):2C4336,154
(S3×C14)⋊3C4 = C7×D6⋊C4φ: C4/C2C2 ⊆ Out S3×C14168(S3xC14):3C4336,84

Non-split extensions G=N.Q with N=S3×C14 and Q=C4
extensionφ:Q→Out NdρLabelID
(S3×C14).1C4 = S3×C7⋊C8φ: C4/C2C2 ⊆ Out S3×C141684(S3xC14).1C4336,24
(S3×C14).2C4 = D6.Dic7φ: C4/C2C2 ⊆ Out S3×C141684(S3xC14).2C4336,27
(S3×C14).3C4 = C7×C8⋊S3φ: C4/C2C2 ⊆ Out S3×C141682(S3xC14).3C4336,75
(S3×C14).4C4 = S3×C56φ: trivial image1682(S3xC14).4C4336,74

׿
×
𝔽