Copied to
clipboard

G = S3×C14order 84 = 22·3·7

Direct product of C14 and S3

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: S3×C14, C6⋊C14, C423C2, C214C22, C3⋊(C2×C14), SmallGroup(84,13)

Series: Derived Chief Lower central Upper central

C1C3 — S3×C14
C1C3C21S3×C7 — S3×C14
C3 — S3×C14
C1C14

Generators and relations for S3×C14
 G = < a,b,c | a14=b3=c2=1, ab=ba, ac=ca, cbc=b-1 >

3C2
3C2
3C22
3C14
3C14
3C2×C14

Smallest permutation representation of S3×C14
On 42 points
Generators in S42
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)
(1 23 37)(2 24 38)(3 25 39)(4 26 40)(5 27 41)(6 28 42)(7 15 29)(8 16 30)(9 17 31)(10 18 32)(11 19 33)(12 20 34)(13 21 35)(14 22 36)
(1 8)(2 9)(3 10)(4 11)(5 12)(6 13)(7 14)(15 36)(16 37)(17 38)(18 39)(19 40)(20 41)(21 42)(22 29)(23 30)(24 31)(25 32)(26 33)(27 34)(28 35)

G:=sub<Sym(42)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42), (1,23,37)(2,24,38)(3,25,39)(4,26,40)(5,27,41)(6,28,42)(7,15,29)(8,16,30)(9,17,31)(10,18,32)(11,19,33)(12,20,34)(13,21,35)(14,22,36), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,36)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,29)(23,30)(24,31)(25,32)(26,33)(27,34)(28,35)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42), (1,23,37)(2,24,38)(3,25,39)(4,26,40)(5,27,41)(6,28,42)(7,15,29)(8,16,30)(9,17,31)(10,18,32)(11,19,33)(12,20,34)(13,21,35)(14,22,36), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,36)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,29)(23,30)(24,31)(25,32)(26,33)(27,34)(28,35) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42)], [(1,23,37),(2,24,38),(3,25,39),(4,26,40),(5,27,41),(6,28,42),(7,15,29),(8,16,30),(9,17,31),(10,18,32),(11,19,33),(12,20,34),(13,21,35),(14,22,36)], [(1,8),(2,9),(3,10),(4,11),(5,12),(6,13),(7,14),(15,36),(16,37),(17,38),(18,39),(19,40),(20,41),(21,42),(22,29),(23,30),(24,31),(25,32),(26,33),(27,34),(28,35)]])

S3×C14 is a maximal subgroup of   C21⋊D4  C7⋊D12

42 conjugacy classes

class 1 2A2B2C 3  6 7A···7F14A···14F14G···14R21A···21F42A···42F
order1222367···714···1414···1421···2142···42
size1133221···11···13···32···22···2

42 irreducible representations

dim1111112222
type+++++
imageC1C2C2C7C14C14S3D6S3×C7S3×C14
kernelS3×C14S3×C7C42D6S3C6C14C7C2C1
# reps12161261166

Matrix representation of S3×C14 in GL2(𝔽29) generated by

40
04
,
2822
250
,
2822
01
G:=sub<GL(2,GF(29))| [4,0,0,4],[28,25,22,0],[28,0,22,1] >;

S3×C14 in GAP, Magma, Sage, TeX

S_3\times C_{14}
% in TeX

G:=Group("S3xC14");
// GroupNames label

G:=SmallGroup(84,13);
// by ID

G=gap.SmallGroup(84,13);
# by ID

G:=PCGroup([4,-2,-2,-7,-3,899]);
// Polycyclic

G:=Group<a,b,c|a^14=b^3=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of S3×C14 in TeX

׿
×
𝔽