Extensions 1→N→G→Q→1 with N=D21⋊C4 and Q=C2

Direct product G=N×Q with N=D21⋊C4 and Q=C2
dρLabelID
C2×D21⋊C4168C2xD21:C4336,156

Semidirect products G=N:Q with N=D21⋊C4 and Q=C2
extensionφ:Q→Out NdρLabelID
D21⋊C41C2 = D84⋊C2φ: C2/C1C2 ⊆ Out D21⋊C41684+D21:C4:1C2336,142
D21⋊C42C2 = D14.D6φ: C2/C1C2 ⊆ Out D21⋊C41684+D21:C4:2C2336,146
D21⋊C43C2 = Dic7.D6φ: C2/C1C2 ⊆ Out D21⋊C41684D21:C4:3C2336,152
D21⋊C44C2 = Dic3.D14φ: C2/C1C2 ⊆ Out D21⋊C41684D21:C4:4C2336,155
D21⋊C45C2 = D6⋊D14φ: C2/C1C2 ⊆ Out D21⋊C4844+D21:C4:5C2336,163
D21⋊C46C2 = C4×S3×D7φ: trivial image844D21:C4:6C2336,147

Non-split extensions G=N.Q with N=D21⋊C4 and Q=C2
extensionφ:Q→Out NdρLabelID
D21⋊C4.C2 = D21⋊Q8φ: C2/C1C2 ⊆ Out D21⋊C41684D21:C4.C2336,143

׿
×
𝔽