Copied to
clipboard

G = D84⋊C2order 336 = 24·3·7

6th semidirect product of D84 and C2 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D846C2, D6.6D14, C28.28D6, Dic145S3, C12.17D14, C42.6C23, Dic7.3D6, C84.14C22, D42.1C22, Dic3.11D14, (C4×S3)⋊2D7, C4.7(S3×D7), (S3×C28)⋊2C2, D21⋊C41C2, C214(C4○D4), C31(C4○D28), C7⋊D122C2, C71(Q83S3), C6.6(C22×D7), (C3×Dic14)⋊3C2, C14.6(C22×S3), (S3×C14).7C22, (C3×Dic7).3C22, (C7×Dic3).9C22, C2.10(C2×S3×D7), SmallGroup(336,142)

Series: Derived Chief Lower central Upper central

C1C42 — D84⋊C2
C1C7C21C42C3×Dic7D21⋊C4 — D84⋊C2
C21C42 — D84⋊C2
C1C2C4

Generators and relations for D84⋊C2
 G = < a,b,c | a84=b2=c2=1, bab=a-1, cac=a29, cbc=a70b >

Subgroups: 484 in 80 conjugacy classes, 32 normal (22 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C7, C2×C4, D4, Q8, Dic3, C12, C12, D6, D6, D7, C14, C14, C4○D4, C21, C4×S3, C4×S3, D12, C3×Q8, Dic7, C28, C28, D14, C2×C14, S3×C7, D21, C42, Q83S3, Dic14, C4×D7, D28, C7⋊D4, C2×C28, C7×Dic3, C3×Dic7, C84, S3×C14, D42, C4○D28, D21⋊C4, C7⋊D12, C3×Dic14, S3×C28, D84, D84⋊C2
Quotients: C1, C2, C22, S3, C23, D6, D7, C4○D4, C22×S3, D14, Q83S3, C22×D7, S3×D7, C4○D28, C2×S3×D7, D84⋊C2

Smallest permutation representation of D84⋊C2
On 168 points
Generators in S168
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 63)(2 62)(3 61)(4 60)(5 59)(6 58)(7 57)(8 56)(9 55)(10 54)(11 53)(12 52)(13 51)(14 50)(15 49)(16 48)(17 47)(18 46)(19 45)(20 44)(21 43)(22 42)(23 41)(24 40)(25 39)(26 38)(27 37)(28 36)(29 35)(30 34)(31 33)(64 84)(65 83)(66 82)(67 81)(68 80)(69 79)(70 78)(71 77)(72 76)(73 75)(85 101)(86 100)(87 99)(88 98)(89 97)(90 96)(91 95)(92 94)(102 168)(103 167)(104 166)(105 165)(106 164)(107 163)(108 162)(109 161)(110 160)(111 159)(112 158)(113 157)(114 156)(115 155)(116 154)(117 153)(118 152)(119 151)(120 150)(121 149)(122 148)(123 147)(124 146)(125 145)(126 144)(127 143)(128 142)(129 141)(130 140)(131 139)(132 138)(133 137)(134 136)
(1 167)(2 112)(3 141)(4 86)(5 115)(6 144)(7 89)(8 118)(9 147)(10 92)(11 121)(12 150)(13 95)(14 124)(15 153)(16 98)(17 127)(18 156)(19 101)(20 130)(21 159)(22 104)(23 133)(24 162)(25 107)(26 136)(27 165)(28 110)(29 139)(30 168)(31 113)(32 142)(33 87)(34 116)(35 145)(36 90)(37 119)(38 148)(39 93)(40 122)(41 151)(42 96)(43 125)(44 154)(45 99)(46 128)(47 157)(48 102)(49 131)(50 160)(51 105)(52 134)(53 163)(54 108)(55 137)(56 166)(57 111)(58 140)(59 85)(60 114)(61 143)(62 88)(63 117)(64 146)(65 91)(66 120)(67 149)(68 94)(69 123)(70 152)(71 97)(72 126)(73 155)(74 100)(75 129)(76 158)(77 103)(78 132)(79 161)(80 106)(81 135)(82 164)(83 109)(84 138)

G:=sub<Sym(168)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,63)(2,62)(3,61)(4,60)(5,59)(6,58)(7,57)(8,56)(9,55)(10,54)(11,53)(12,52)(13,51)(14,50)(15,49)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,40)(25,39)(26,38)(27,37)(28,36)(29,35)(30,34)(31,33)(64,84)(65,83)(66,82)(67,81)(68,80)(69,79)(70,78)(71,77)(72,76)(73,75)(85,101)(86,100)(87,99)(88,98)(89,97)(90,96)(91,95)(92,94)(102,168)(103,167)(104,166)(105,165)(106,164)(107,163)(108,162)(109,161)(110,160)(111,159)(112,158)(113,157)(114,156)(115,155)(116,154)(117,153)(118,152)(119,151)(120,150)(121,149)(122,148)(123,147)(124,146)(125,145)(126,144)(127,143)(128,142)(129,141)(130,140)(131,139)(132,138)(133,137)(134,136), (1,167)(2,112)(3,141)(4,86)(5,115)(6,144)(7,89)(8,118)(9,147)(10,92)(11,121)(12,150)(13,95)(14,124)(15,153)(16,98)(17,127)(18,156)(19,101)(20,130)(21,159)(22,104)(23,133)(24,162)(25,107)(26,136)(27,165)(28,110)(29,139)(30,168)(31,113)(32,142)(33,87)(34,116)(35,145)(36,90)(37,119)(38,148)(39,93)(40,122)(41,151)(42,96)(43,125)(44,154)(45,99)(46,128)(47,157)(48,102)(49,131)(50,160)(51,105)(52,134)(53,163)(54,108)(55,137)(56,166)(57,111)(58,140)(59,85)(60,114)(61,143)(62,88)(63,117)(64,146)(65,91)(66,120)(67,149)(68,94)(69,123)(70,152)(71,97)(72,126)(73,155)(74,100)(75,129)(76,158)(77,103)(78,132)(79,161)(80,106)(81,135)(82,164)(83,109)(84,138)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,63)(2,62)(3,61)(4,60)(5,59)(6,58)(7,57)(8,56)(9,55)(10,54)(11,53)(12,52)(13,51)(14,50)(15,49)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,40)(25,39)(26,38)(27,37)(28,36)(29,35)(30,34)(31,33)(64,84)(65,83)(66,82)(67,81)(68,80)(69,79)(70,78)(71,77)(72,76)(73,75)(85,101)(86,100)(87,99)(88,98)(89,97)(90,96)(91,95)(92,94)(102,168)(103,167)(104,166)(105,165)(106,164)(107,163)(108,162)(109,161)(110,160)(111,159)(112,158)(113,157)(114,156)(115,155)(116,154)(117,153)(118,152)(119,151)(120,150)(121,149)(122,148)(123,147)(124,146)(125,145)(126,144)(127,143)(128,142)(129,141)(130,140)(131,139)(132,138)(133,137)(134,136), (1,167)(2,112)(3,141)(4,86)(5,115)(6,144)(7,89)(8,118)(9,147)(10,92)(11,121)(12,150)(13,95)(14,124)(15,153)(16,98)(17,127)(18,156)(19,101)(20,130)(21,159)(22,104)(23,133)(24,162)(25,107)(26,136)(27,165)(28,110)(29,139)(30,168)(31,113)(32,142)(33,87)(34,116)(35,145)(36,90)(37,119)(38,148)(39,93)(40,122)(41,151)(42,96)(43,125)(44,154)(45,99)(46,128)(47,157)(48,102)(49,131)(50,160)(51,105)(52,134)(53,163)(54,108)(55,137)(56,166)(57,111)(58,140)(59,85)(60,114)(61,143)(62,88)(63,117)(64,146)(65,91)(66,120)(67,149)(68,94)(69,123)(70,152)(71,97)(72,126)(73,155)(74,100)(75,129)(76,158)(77,103)(78,132)(79,161)(80,106)(81,135)(82,164)(83,109)(84,138) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,63),(2,62),(3,61),(4,60),(5,59),(6,58),(7,57),(8,56),(9,55),(10,54),(11,53),(12,52),(13,51),(14,50),(15,49),(16,48),(17,47),(18,46),(19,45),(20,44),(21,43),(22,42),(23,41),(24,40),(25,39),(26,38),(27,37),(28,36),(29,35),(30,34),(31,33),(64,84),(65,83),(66,82),(67,81),(68,80),(69,79),(70,78),(71,77),(72,76),(73,75),(85,101),(86,100),(87,99),(88,98),(89,97),(90,96),(91,95),(92,94),(102,168),(103,167),(104,166),(105,165),(106,164),(107,163),(108,162),(109,161),(110,160),(111,159),(112,158),(113,157),(114,156),(115,155),(116,154),(117,153),(118,152),(119,151),(120,150),(121,149),(122,148),(123,147),(124,146),(125,145),(126,144),(127,143),(128,142),(129,141),(130,140),(131,139),(132,138),(133,137),(134,136)], [(1,167),(2,112),(3,141),(4,86),(5,115),(6,144),(7,89),(8,118),(9,147),(10,92),(11,121),(12,150),(13,95),(14,124),(15,153),(16,98),(17,127),(18,156),(19,101),(20,130),(21,159),(22,104),(23,133),(24,162),(25,107),(26,136),(27,165),(28,110),(29,139),(30,168),(31,113),(32,142),(33,87),(34,116),(35,145),(36,90),(37,119),(38,148),(39,93),(40,122),(41,151),(42,96),(43,125),(44,154),(45,99),(46,128),(47,157),(48,102),(49,131),(50,160),(51,105),(52,134),(53,163),(54,108),(55,137),(56,166),(57,111),(58,140),(59,85),(60,114),(61,143),(62,88),(63,117),(64,146),(65,91),(66,120),(67,149),(68,94),(69,123),(70,152),(71,97),(72,126),(73,155),(74,100),(75,129),(76,158),(77,103),(78,132),(79,161),(80,106),(81,135),(82,164),(83,109),(84,138)]])

51 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E 6 7A7B7C12A12B12C14A14B14C14D···14I21A21B21C28A···28F28G···28L42A42B42C84A···84F
order12222344444677712121214141414···1421212128···2828···2842424284···84
size1164242223314142222428282226···64442···26···64444···4

51 irreducible representations

dim1111112222222224444
type+++++++++++++++++
imageC1C2C2C2C2C2S3D6D6D7C4○D4D14D14D14C4○D28Q83S3S3×D7C2×S3×D7D84⋊C2
kernelD84⋊C2D21⋊C4C7⋊D12C3×Dic14S3×C28D84Dic14Dic7C28C4×S3C21Dic3C12D6C3C7C4C2C1
# reps12211112132333121336

Matrix representation of D84⋊C2 in GL6(𝔽337)

3363350000
110000
0033619300
0025222800
00000336
00001336
,
33600000
110000
0022833600
008510900
00001336
00000336
,
189410000
1481480000
001000
000100
000001
000010

G:=sub<GL(6,GF(337))| [336,1,0,0,0,0,335,1,0,0,0,0,0,0,336,252,0,0,0,0,193,228,0,0,0,0,0,0,0,1,0,0,0,0,336,336],[336,1,0,0,0,0,0,1,0,0,0,0,0,0,228,85,0,0,0,0,336,109,0,0,0,0,0,0,1,0,0,0,0,0,336,336],[189,148,0,0,0,0,41,148,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

D84⋊C2 in GAP, Magma, Sage, TeX

D_{84}\rtimes C_2
% in TeX

G:=Group("D84:C2");
// GroupNames label

G:=SmallGroup(336,142);
// by ID

G=gap.SmallGroup(336,142);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-7,48,55,218,50,490,10373]);
// Polycyclic

G:=Group<a,b,c|a^84=b^2=c^2=1,b*a*b=a^-1,c*a*c=a^29,c*b*c=a^70*b>;
// generators/relations

׿
×
𝔽