Extensions 1→N→G→Q→1 with N=C3⋊D28 and Q=C2

Direct product G=N×Q with N=C3⋊D28 and Q=C2
dρLabelID
C2×C3⋊D28168C2xC3:D28336,158

Semidirect products G=N:Q with N=C3⋊D28 and Q=C2
extensionφ:Q→Out NdρLabelID
C3⋊D281C2 = D28⋊S3φ: C2/C1C2 ⊆ Out C3⋊D281684C3:D28:1C2336,139
C3⋊D282C2 = D14.D6φ: C2/C1C2 ⊆ Out C3⋊D281684+C3:D28:2C2336,146
C3⋊D283C2 = S3×D28φ: C2/C1C2 ⊆ Out C3⋊D28844+C3:D28:3C2336,149
C3⋊D284C2 = Dic7.D6φ: C2/C1C2 ⊆ Out C3⋊D281684C3:D28:4C2336,152
C3⋊D285C2 = D7×C3⋊D4φ: C2/C1C2 ⊆ Out C3⋊D28844C3:D28:5C2336,161
C3⋊D286C2 = D6⋊D14φ: C2/C1C2 ⊆ Out C3⋊D28844+C3:D28:6C2336,163
C3⋊D287C2 = D6.D14φ: trivial image1684C3:D28:7C2336,144


׿
×
𝔽