metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D6.7D14, D14.5D6, C28.35D6, C12.35D14, C42.8C23, Dic7.8D6, C84.35C22, Dic3.8D14, D42.11C22, Dic21.13C22, C21⋊Q8⋊7C2, (C4×D7)⋊4S3, (C4×S3)⋊4D7, (S3×C28)⋊4C2, (C4×D21)⋊8C2, (C12×D7)⋊4C2, C7⋊2(C4○D12), C3⋊2(C4○D28), C21⋊5(C4○D4), C3⋊D28⋊7C2, C7⋊D12⋊7C2, C21⋊D4⋊7C2, C4.28(S3×D7), C6.8(C22×D7), C14.8(C22×S3), (C6×D7).6C22, (S3×C14).8C22, (C3×Dic7).8C22, (C7×Dic3).10C22, C2.12(C2×S3×D7), SmallGroup(336,144)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D6.D14
G = < a,b,c,d | a14=b2=1, c6=d2=a7, bab=a-1, ac=ca, ad=da, bc=cb, dbd-1=a7b, dcd-1=c5 >
Subgroups: 452 in 80 conjugacy classes, 32 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C6, C7, C2×C4, D4, Q8, Dic3, Dic3, C12, C12, D6, D6, C2×C6, D7, C14, C14, C4○D4, C21, Dic6, C4×S3, C4×S3, D12, C3⋊D4, C2×C12, Dic7, Dic7, C28, C28, D14, D14, C2×C14, S3×C7, C3×D7, D21, C42, C4○D12, Dic14, C4×D7, C4×D7, D28, C7⋊D4, C2×C28, C7×Dic3, C3×Dic7, Dic21, C84, C6×D7, S3×C14, D42, C4○D28, C21⋊D4, C3⋊D28, C7⋊D12, C21⋊Q8, C12×D7, S3×C28, C4×D21, D6.D14
Quotients: C1, C2, C22, S3, C23, D6, D7, C4○D4, C22×S3, D14, C4○D12, C22×D7, S3×D7, C4○D28, C2×S3×D7, D6.D14
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154)(155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 102)(2 101)(3 100)(4 99)(5 112)(6 111)(7 110)(8 109)(9 108)(10 107)(11 106)(12 105)(13 104)(14 103)(15 79)(16 78)(17 77)(18 76)(19 75)(20 74)(21 73)(22 72)(23 71)(24 84)(25 83)(26 82)(27 81)(28 80)(29 146)(30 145)(31 144)(32 143)(33 142)(34 141)(35 154)(36 153)(37 152)(38 151)(39 150)(40 149)(41 148)(42 147)(43 119)(44 118)(45 117)(46 116)(47 115)(48 114)(49 113)(50 126)(51 125)(52 124)(53 123)(54 122)(55 121)(56 120)(57 132)(58 131)(59 130)(60 129)(61 128)(62 127)(63 140)(64 139)(65 138)(66 137)(67 136)(68 135)(69 134)(70 133)(85 156)(86 155)(87 168)(88 167)(89 166)(90 165)(91 164)(92 163)(93 162)(94 161)(95 160)(96 159)(97 158)(98 157)
(1 63 54 83 29 167 8 70 47 76 36 160)(2 64 55 84 30 168 9 57 48 77 37 161)(3 65 56 71 31 155 10 58 49 78 38 162)(4 66 43 72 32 156 11 59 50 79 39 163)(5 67 44 73 33 157 12 60 51 80 40 164)(6 68 45 74 34 158 13 61 52 81 41 165)(7 69 46 75 35 159 14 62 53 82 42 166)(15 150 92 99 137 119 22 143 85 106 130 126)(16 151 93 100 138 120 23 144 86 107 131 113)(17 152 94 101 139 121 24 145 87 108 132 114)(18 153 95 102 140 122 25 146 88 109 133 115)(19 154 96 103 127 123 26 147 89 110 134 116)(20 141 97 104 128 124 27 148 90 111 135 117)(21 142 98 105 129 125 28 149 91 112 136 118)
(1 123 8 116)(2 124 9 117)(3 125 10 118)(4 126 11 119)(5 113 12 120)(6 114 13 121)(7 115 14 122)(15 163 22 156)(16 164 23 157)(17 165 24 158)(18 166 25 159)(19 167 26 160)(20 168 27 161)(21 155 28 162)(29 154 36 147)(30 141 37 148)(31 142 38 149)(32 143 39 150)(33 144 40 151)(34 145 41 152)(35 146 42 153)(43 106 50 99)(44 107 51 100)(45 108 52 101)(46 109 53 102)(47 110 54 103)(48 111 55 104)(49 112 56 105)(57 128 64 135)(58 129 65 136)(59 130 66 137)(60 131 67 138)(61 132 68 139)(62 133 69 140)(63 134 70 127)(71 91 78 98)(72 92 79 85)(73 93 80 86)(74 94 81 87)(75 95 82 88)(76 96 83 89)(77 97 84 90)
G:=sub<Sym(168)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,102)(2,101)(3,100)(4,99)(5,112)(6,111)(7,110)(8,109)(9,108)(10,107)(11,106)(12,105)(13,104)(14,103)(15,79)(16,78)(17,77)(18,76)(19,75)(20,74)(21,73)(22,72)(23,71)(24,84)(25,83)(26,82)(27,81)(28,80)(29,146)(30,145)(31,144)(32,143)(33,142)(34,141)(35,154)(36,153)(37,152)(38,151)(39,150)(40,149)(41,148)(42,147)(43,119)(44,118)(45,117)(46,116)(47,115)(48,114)(49,113)(50,126)(51,125)(52,124)(53,123)(54,122)(55,121)(56,120)(57,132)(58,131)(59,130)(60,129)(61,128)(62,127)(63,140)(64,139)(65,138)(66,137)(67,136)(68,135)(69,134)(70,133)(85,156)(86,155)(87,168)(88,167)(89,166)(90,165)(91,164)(92,163)(93,162)(94,161)(95,160)(96,159)(97,158)(98,157), (1,63,54,83,29,167,8,70,47,76,36,160)(2,64,55,84,30,168,9,57,48,77,37,161)(3,65,56,71,31,155,10,58,49,78,38,162)(4,66,43,72,32,156,11,59,50,79,39,163)(5,67,44,73,33,157,12,60,51,80,40,164)(6,68,45,74,34,158,13,61,52,81,41,165)(7,69,46,75,35,159,14,62,53,82,42,166)(15,150,92,99,137,119,22,143,85,106,130,126)(16,151,93,100,138,120,23,144,86,107,131,113)(17,152,94,101,139,121,24,145,87,108,132,114)(18,153,95,102,140,122,25,146,88,109,133,115)(19,154,96,103,127,123,26,147,89,110,134,116)(20,141,97,104,128,124,27,148,90,111,135,117)(21,142,98,105,129,125,28,149,91,112,136,118), (1,123,8,116)(2,124,9,117)(3,125,10,118)(4,126,11,119)(5,113,12,120)(6,114,13,121)(7,115,14,122)(15,163,22,156)(16,164,23,157)(17,165,24,158)(18,166,25,159)(19,167,26,160)(20,168,27,161)(21,155,28,162)(29,154,36,147)(30,141,37,148)(31,142,38,149)(32,143,39,150)(33,144,40,151)(34,145,41,152)(35,146,42,153)(43,106,50,99)(44,107,51,100)(45,108,52,101)(46,109,53,102)(47,110,54,103)(48,111,55,104)(49,112,56,105)(57,128,64,135)(58,129,65,136)(59,130,66,137)(60,131,67,138)(61,132,68,139)(62,133,69,140)(63,134,70,127)(71,91,78,98)(72,92,79,85)(73,93,80,86)(74,94,81,87)(75,95,82,88)(76,96,83,89)(77,97,84,90)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,102)(2,101)(3,100)(4,99)(5,112)(6,111)(7,110)(8,109)(9,108)(10,107)(11,106)(12,105)(13,104)(14,103)(15,79)(16,78)(17,77)(18,76)(19,75)(20,74)(21,73)(22,72)(23,71)(24,84)(25,83)(26,82)(27,81)(28,80)(29,146)(30,145)(31,144)(32,143)(33,142)(34,141)(35,154)(36,153)(37,152)(38,151)(39,150)(40,149)(41,148)(42,147)(43,119)(44,118)(45,117)(46,116)(47,115)(48,114)(49,113)(50,126)(51,125)(52,124)(53,123)(54,122)(55,121)(56,120)(57,132)(58,131)(59,130)(60,129)(61,128)(62,127)(63,140)(64,139)(65,138)(66,137)(67,136)(68,135)(69,134)(70,133)(85,156)(86,155)(87,168)(88,167)(89,166)(90,165)(91,164)(92,163)(93,162)(94,161)(95,160)(96,159)(97,158)(98,157), (1,63,54,83,29,167,8,70,47,76,36,160)(2,64,55,84,30,168,9,57,48,77,37,161)(3,65,56,71,31,155,10,58,49,78,38,162)(4,66,43,72,32,156,11,59,50,79,39,163)(5,67,44,73,33,157,12,60,51,80,40,164)(6,68,45,74,34,158,13,61,52,81,41,165)(7,69,46,75,35,159,14,62,53,82,42,166)(15,150,92,99,137,119,22,143,85,106,130,126)(16,151,93,100,138,120,23,144,86,107,131,113)(17,152,94,101,139,121,24,145,87,108,132,114)(18,153,95,102,140,122,25,146,88,109,133,115)(19,154,96,103,127,123,26,147,89,110,134,116)(20,141,97,104,128,124,27,148,90,111,135,117)(21,142,98,105,129,125,28,149,91,112,136,118), (1,123,8,116)(2,124,9,117)(3,125,10,118)(4,126,11,119)(5,113,12,120)(6,114,13,121)(7,115,14,122)(15,163,22,156)(16,164,23,157)(17,165,24,158)(18,166,25,159)(19,167,26,160)(20,168,27,161)(21,155,28,162)(29,154,36,147)(30,141,37,148)(31,142,38,149)(32,143,39,150)(33,144,40,151)(34,145,41,152)(35,146,42,153)(43,106,50,99)(44,107,51,100)(45,108,52,101)(46,109,53,102)(47,110,54,103)(48,111,55,104)(49,112,56,105)(57,128,64,135)(58,129,65,136)(59,130,66,137)(60,131,67,138)(61,132,68,139)(62,133,69,140)(63,134,70,127)(71,91,78,98)(72,92,79,85)(73,93,80,86)(74,94,81,87)(75,95,82,88)(76,96,83,89)(77,97,84,90) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154),(155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,102),(2,101),(3,100),(4,99),(5,112),(6,111),(7,110),(8,109),(9,108),(10,107),(11,106),(12,105),(13,104),(14,103),(15,79),(16,78),(17,77),(18,76),(19,75),(20,74),(21,73),(22,72),(23,71),(24,84),(25,83),(26,82),(27,81),(28,80),(29,146),(30,145),(31,144),(32,143),(33,142),(34,141),(35,154),(36,153),(37,152),(38,151),(39,150),(40,149),(41,148),(42,147),(43,119),(44,118),(45,117),(46,116),(47,115),(48,114),(49,113),(50,126),(51,125),(52,124),(53,123),(54,122),(55,121),(56,120),(57,132),(58,131),(59,130),(60,129),(61,128),(62,127),(63,140),(64,139),(65,138),(66,137),(67,136),(68,135),(69,134),(70,133),(85,156),(86,155),(87,168),(88,167),(89,166),(90,165),(91,164),(92,163),(93,162),(94,161),(95,160),(96,159),(97,158),(98,157)], [(1,63,54,83,29,167,8,70,47,76,36,160),(2,64,55,84,30,168,9,57,48,77,37,161),(3,65,56,71,31,155,10,58,49,78,38,162),(4,66,43,72,32,156,11,59,50,79,39,163),(5,67,44,73,33,157,12,60,51,80,40,164),(6,68,45,74,34,158,13,61,52,81,41,165),(7,69,46,75,35,159,14,62,53,82,42,166),(15,150,92,99,137,119,22,143,85,106,130,126),(16,151,93,100,138,120,23,144,86,107,131,113),(17,152,94,101,139,121,24,145,87,108,132,114),(18,153,95,102,140,122,25,146,88,109,133,115),(19,154,96,103,127,123,26,147,89,110,134,116),(20,141,97,104,128,124,27,148,90,111,135,117),(21,142,98,105,129,125,28,149,91,112,136,118)], [(1,123,8,116),(2,124,9,117),(3,125,10,118),(4,126,11,119),(5,113,12,120),(6,114,13,121),(7,115,14,122),(15,163,22,156),(16,164,23,157),(17,165,24,158),(18,166,25,159),(19,167,26,160),(20,168,27,161),(21,155,28,162),(29,154,36,147),(30,141,37,148),(31,142,38,149),(32,143,39,150),(33,144,40,151),(34,145,41,152),(35,146,42,153),(43,106,50,99),(44,107,51,100),(45,108,52,101),(46,109,53,102),(47,110,54,103),(48,111,55,104),(49,112,56,105),(57,128,64,135),(58,129,65,136),(59,130,66,137),(60,131,67,138),(61,132,68,139),(62,133,69,140),(63,134,70,127),(71,91,78,98),(72,92,79,85),(73,93,80,86),(74,94,81,87),(75,95,82,88),(76,96,83,89),(77,97,84,90)]])
54 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 6C | 7A | 7B | 7C | 12A | 12B | 12C | 12D | 14A | 14B | 14C | 14D | ··· | 14I | 21A | 21B | 21C | 28A | ··· | 28F | 28G | ··· | 28L | 42A | 42B | 42C | 84A | ··· | 84F |
order | 1 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 7 | 7 | 7 | 12 | 12 | 12 | 12 | 14 | 14 | 14 | 14 | ··· | 14 | 21 | 21 | 21 | 28 | ··· | 28 | 28 | ··· | 28 | 42 | 42 | 42 | 84 | ··· | 84 |
size | 1 | 1 | 6 | 14 | 42 | 2 | 1 | 1 | 6 | 14 | 42 | 2 | 14 | 14 | 2 | 2 | 2 | 2 | 2 | 14 | 14 | 2 | 2 | 2 | 6 | ··· | 6 | 4 | 4 | 4 | 2 | ··· | 2 | 6 | ··· | 6 | 4 | 4 | 4 | 4 | ··· | 4 |
54 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D6 | D6 | D6 | D7 | C4○D4 | D14 | D14 | D14 | C4○D12 | C4○D28 | S3×D7 | C2×S3×D7 | D6.D14 |
kernel | D6.D14 | C21⋊D4 | C3⋊D28 | C7⋊D12 | C21⋊Q8 | C12×D7 | S3×C28 | C4×D21 | C4×D7 | Dic7 | C28 | D14 | C4×S3 | C21 | Dic3 | C12 | D6 | C7 | C3 | C4 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 2 | 3 | 3 | 3 | 4 | 12 | 3 | 3 | 6 |
Matrix representation of D6.D14 ►in GL4(𝔽337) generated by
304 | 304 | 0 | 0 |
33 | 227 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
80 | 257 | 0 | 0 |
219 | 257 | 0 | 0 |
0 | 0 | 336 | 0 |
0 | 0 | 0 | 336 |
189 | 0 | 0 | 0 |
0 | 189 | 0 | 0 |
0 | 0 | 2 | 325 |
0 | 0 | 253 | 336 |
243 | 225 | 0 | 0 |
112 | 94 | 0 | 0 |
0 | 0 | 2 | 325 |
0 | 0 | 253 | 335 |
G:=sub<GL(4,GF(337))| [304,33,0,0,304,227,0,0,0,0,1,0,0,0,0,1],[80,219,0,0,257,257,0,0,0,0,336,0,0,0,0,336],[189,0,0,0,0,189,0,0,0,0,2,253,0,0,325,336],[243,112,0,0,225,94,0,0,0,0,2,253,0,0,325,335] >;
D6.D14 in GAP, Magma, Sage, TeX
D_6.D_{14}
% in TeX
G:=Group("D6.D14");
// GroupNames label
G:=SmallGroup(336,144);
// by ID
G=gap.SmallGroup(336,144);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-7,121,50,490,10373]);
// Polycyclic
G:=Group<a,b,c,d|a^14=b^2=1,c^6=d^2=a^7,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=a^7*b,d*c*d^-1=c^5>;
// generators/relations