Copied to
clipboard

G = S3×D28order 336 = 24·3·7

Direct product of S3 and D28

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: S3×D28, C284D6, D847C2, D141D6, C121D14, C842C22, Dic33D14, D6.10D14, D422C22, C42.13C23, C71(S3×D4), C41(S3×D7), C212(C2×D4), C31(C2×D28), (S3×C7)⋊1D4, (C4×S3)⋊3D7, (S3×C28)⋊3C2, (C3×D28)⋊3C2, C3⋊D283C2, (C6×D7)⋊1C22, C6.13(C22×D7), C14.13(C22×S3), (C7×Dic3)⋊4C22, (S3×C14).10C22, (C2×S3×D7)⋊2C2, C2.16(C2×S3×D7), SmallGroup(336,149)

Series: Derived Chief Lower central Upper central

C1C42 — S3×D28
C1C7C21C42C6×D7C2×S3×D7 — S3×D28
C21C42 — S3×D28
C1C2C4

Generators and relations for S3×D28
 G = < a,b,c,d | a3=b2=c28=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 804 in 108 conjugacy classes, 36 normal (22 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, S3, C6, C6, C7, C2×C4, D4, C23, Dic3, C12, D6, D6, C2×C6, D7, C14, C14, C2×D4, C21, C4×S3, D12, C3⋊D4, C3×D4, C22×S3, C28, C28, D14, D14, C2×C14, S3×C7, C3×D7, D21, C42, S3×D4, D28, D28, C2×C28, C22×D7, C7×Dic3, C84, S3×D7, C6×D7, S3×C14, D42, C2×D28, C3⋊D28, C3×D28, S3×C28, D84, C2×S3×D7, S3×D28
Quotients: C1, C2, C22, S3, D4, C23, D6, D7, C2×D4, C22×S3, D14, S3×D4, D28, C22×D7, S3×D7, C2×D28, C2×S3×D7, S3×D28

Smallest permutation representation of S3×D28
On 84 points
Generators in S84
(1 52 66)(2 53 67)(3 54 68)(4 55 69)(5 56 70)(6 29 71)(7 30 72)(8 31 73)(9 32 74)(10 33 75)(11 34 76)(12 35 77)(13 36 78)(14 37 79)(15 38 80)(16 39 81)(17 40 82)(18 41 83)(19 42 84)(20 43 57)(21 44 58)(22 45 59)(23 46 60)(24 47 61)(25 48 62)(26 49 63)(27 50 64)(28 51 65)
(29 71)(30 72)(31 73)(32 74)(33 75)(34 76)(35 77)(36 78)(37 79)(38 80)(39 81)(40 82)(41 83)(42 84)(43 57)(44 58)(45 59)(46 60)(47 61)(48 62)(49 63)(50 64)(51 65)(52 66)(53 67)(54 68)(55 69)(56 70)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)
(1 7)(2 6)(3 5)(8 28)(9 27)(10 26)(11 25)(12 24)(13 23)(14 22)(15 21)(16 20)(17 19)(29 53)(30 52)(31 51)(32 50)(33 49)(34 48)(35 47)(36 46)(37 45)(38 44)(39 43)(40 42)(54 56)(57 81)(58 80)(59 79)(60 78)(61 77)(62 76)(63 75)(64 74)(65 73)(66 72)(67 71)(68 70)(82 84)

G:=sub<Sym(84)| (1,52,66)(2,53,67)(3,54,68)(4,55,69)(5,56,70)(6,29,71)(7,30,72)(8,31,73)(9,32,74)(10,33,75)(11,34,76)(12,35,77)(13,36,78)(14,37,79)(15,38,80)(16,39,81)(17,40,82)(18,41,83)(19,42,84)(20,43,57)(21,44,58)(22,45,59)(23,46,60)(24,47,61)(25,48,62)(26,49,63)(27,50,64)(28,51,65), (29,71)(30,72)(31,73)(32,74)(33,75)(34,76)(35,77)(36,78)(37,79)(38,80)(39,81)(40,82)(41,83)(42,84)(43,57)(44,58)(45,59)(46,60)(47,61)(48,62)(49,63)(50,64)(51,65)(52,66)(53,67)(54,68)(55,69)(56,70), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84), (1,7)(2,6)(3,5)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19)(29,53)(30,52)(31,51)(32,50)(33,49)(34,48)(35,47)(36,46)(37,45)(38,44)(39,43)(40,42)(54,56)(57,81)(58,80)(59,79)(60,78)(61,77)(62,76)(63,75)(64,74)(65,73)(66,72)(67,71)(68,70)(82,84)>;

G:=Group( (1,52,66)(2,53,67)(3,54,68)(4,55,69)(5,56,70)(6,29,71)(7,30,72)(8,31,73)(9,32,74)(10,33,75)(11,34,76)(12,35,77)(13,36,78)(14,37,79)(15,38,80)(16,39,81)(17,40,82)(18,41,83)(19,42,84)(20,43,57)(21,44,58)(22,45,59)(23,46,60)(24,47,61)(25,48,62)(26,49,63)(27,50,64)(28,51,65), (29,71)(30,72)(31,73)(32,74)(33,75)(34,76)(35,77)(36,78)(37,79)(38,80)(39,81)(40,82)(41,83)(42,84)(43,57)(44,58)(45,59)(46,60)(47,61)(48,62)(49,63)(50,64)(51,65)(52,66)(53,67)(54,68)(55,69)(56,70), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84), (1,7)(2,6)(3,5)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19)(29,53)(30,52)(31,51)(32,50)(33,49)(34,48)(35,47)(36,46)(37,45)(38,44)(39,43)(40,42)(54,56)(57,81)(58,80)(59,79)(60,78)(61,77)(62,76)(63,75)(64,74)(65,73)(66,72)(67,71)(68,70)(82,84) );

G=PermutationGroup([[(1,52,66),(2,53,67),(3,54,68),(4,55,69),(5,56,70),(6,29,71),(7,30,72),(8,31,73),(9,32,74),(10,33,75),(11,34,76),(12,35,77),(13,36,78),(14,37,79),(15,38,80),(16,39,81),(17,40,82),(18,41,83),(19,42,84),(20,43,57),(21,44,58),(22,45,59),(23,46,60),(24,47,61),(25,48,62),(26,49,63),(27,50,64),(28,51,65)], [(29,71),(30,72),(31,73),(32,74),(33,75),(34,76),(35,77),(36,78),(37,79),(38,80),(39,81),(40,82),(41,83),(42,84),(43,57),(44,58),(45,59),(46,60),(47,61),(48,62),(49,63),(50,64),(51,65),(52,66),(53,67),(54,68),(55,69),(56,70)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)], [(1,7),(2,6),(3,5),(8,28),(9,27),(10,26),(11,25),(12,24),(13,23),(14,22),(15,21),(16,20),(17,19),(29,53),(30,52),(31,51),(32,50),(33,49),(34,48),(35,47),(36,46),(37,45),(38,44),(39,43),(40,42),(54,56),(57,81),(58,80),(59,79),(60,78),(61,77),(62,76),(63,75),(64,74),(65,73),(66,72),(67,71),(68,70),(82,84)]])

51 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B6A6B6C7A7B7C 12 14A14B14C14D···14I21A21B21C28A···28F28G···28L42A42B42C84A···84F
order122222223446667771214141414···1421212128···2828···2842424284···84
size1133141442422262282822242226···64442···26···64444···4

51 irreducible representations

dim1111112222222224444
type+++++++++++++++++++
imageC1C2C2C2C2C2S3D4D6D6D7D14D14D14D28S3×D4S3×D7C2×S3×D7S3×D28
kernelS3×D28C3⋊D28C3×D28S3×C28D84C2×S3×D7D28S3×C7C28D14C4×S3Dic3C12D6S3C7C4C2C1
# reps12111212123333121336

Matrix representation of S3×D28 in GL4(𝔽337) generated by

1000
0100
00335141
00431
,
1000
0100
0010
00294336
,
2429900
3831900
0010
0001
,
10914300
22822800
0010
0001
G:=sub<GL(4,GF(337))| [1,0,0,0,0,1,0,0,0,0,335,43,0,0,141,1],[1,0,0,0,0,1,0,0,0,0,1,294,0,0,0,336],[24,38,0,0,299,319,0,0,0,0,1,0,0,0,0,1],[109,228,0,0,143,228,0,0,0,0,1,0,0,0,0,1] >;

S3×D28 in GAP, Magma, Sage, TeX

S_3\times D_{28}
% in TeX

G:=Group("S3xD28");
// GroupNames label

G:=SmallGroup(336,149);
// by ID

G=gap.SmallGroup(336,149);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-7,218,50,490,10373]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^28=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽