Extensions 1→N→G→Q→1 with N=C6 and Q=C3×D9

Direct product G=N×Q with N=C6 and Q=C3×D9

Semidirect products G=N:Q with N=C6 and Q=C3×D9
extensionφ:Q→Aut NdρLabelID
C6⋊(C3×D9) = C6×C9⋊S3φ: C3×D9/C3×C9C2 ⊆ Aut C6108C6:(C3xD9)324,142

Non-split extensions G=N.Q with N=C6 and Q=C3×D9
extensionφ:Q→Aut NdρLabelID
C6.1(C3×D9) = C32⋊Dic9φ: C3×D9/C3×C9C2 ⊆ Aut C6108C6.1(C3xD9)324,8
C6.2(C3×D9) = C3×Dic27φ: C3×D9/C3×C9C2 ⊆ Aut C61082C6.2(C3xD9)324,10
C6.3(C3×D9) = C27⋊C12φ: C3×D9/C3×C9C2 ⊆ Aut C61086-C6.3(C3xD9)324,12
C6.4(C3×D9) = C2×C32⋊D9φ: C3×D9/C3×C9C2 ⊆ Aut C654C6.4(C3xD9)324,63
C6.5(C3×D9) = C6×D27φ: C3×D9/C3×C9C2 ⊆ Aut C61082C6.5(C3xD9)324,65
C6.6(C3×D9) = C2×C27⋊C6φ: C3×D9/C3×C9C2 ⊆ Aut C6546+C6.6(C3xD9)324,67
C6.7(C3×D9) = C3×C9⋊Dic3φ: C3×D9/C3×C9C2 ⊆ Aut C6108C6.7(C3xD9)324,96
C6.8(C3×D9) = C9×Dic9central extension (φ=1)362C6.8(C3xD9)324,6
C6.9(C3×D9) = D9×C18central extension (φ=1)362C6.9(C3xD9)324,61
C6.10(C3×D9) = C32×Dic9central extension (φ=1)108C6.10(C3xD9)324,90