direct product, metacyclic, supersoluble, monomial, A-group
Aliases: C3×Dic27, C27⋊3C12, C54.3C6, C6.4D27, C32.2Dic9, (C3×C27)⋊2C4, C2.(C3×D27), C6.2(C3×D9), (C3×C6).5D9, C18.3(C3×S3), (C3×C54).2C2, (C3×C18).18S3, C3.2(C3×Dic9), (C3×C9).5Dic3, C9.1(C3×Dic3), SmallGroup(324,10)
Series: Derived ►Chief ►Lower central ►Upper central
C27 — C3×Dic27 |
Generators and relations for C3×Dic27
G = < a,b,c | a3=b54=1, c2=b27, ab=ba, ac=ca, cbc-1=b-1 >
(1 19 37)(2 20 38)(3 21 39)(4 22 40)(5 23 41)(6 24 42)(7 25 43)(8 26 44)(9 27 45)(10 28 46)(11 29 47)(12 30 48)(13 31 49)(14 32 50)(15 33 51)(16 34 52)(17 35 53)(18 36 54)(55 91 73)(56 92 74)(57 93 75)(58 94 76)(59 95 77)(60 96 78)(61 97 79)(62 98 80)(63 99 81)(64 100 82)(65 101 83)(66 102 84)(67 103 85)(68 104 86)(69 105 87)(70 106 88)(71 107 89)(72 108 90)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)
(1 82 28 55)(2 81 29 108)(3 80 30 107)(4 79 31 106)(5 78 32 105)(6 77 33 104)(7 76 34 103)(8 75 35 102)(9 74 36 101)(10 73 37 100)(11 72 38 99)(12 71 39 98)(13 70 40 97)(14 69 41 96)(15 68 42 95)(16 67 43 94)(17 66 44 93)(18 65 45 92)(19 64 46 91)(20 63 47 90)(21 62 48 89)(22 61 49 88)(23 60 50 87)(24 59 51 86)(25 58 52 85)(26 57 53 84)(27 56 54 83)
G:=sub<Sym(108)| (1,19,37)(2,20,38)(3,21,39)(4,22,40)(5,23,41)(6,24,42)(7,25,43)(8,26,44)(9,27,45)(10,28,46)(11,29,47)(12,30,48)(13,31,49)(14,32,50)(15,33,51)(16,34,52)(17,35,53)(18,36,54)(55,91,73)(56,92,74)(57,93,75)(58,94,76)(59,95,77)(60,96,78)(61,97,79)(62,98,80)(63,99,81)(64,100,82)(65,101,83)(66,102,84)(67,103,85)(68,104,86)(69,105,87)(70,106,88)(71,107,89)(72,108,90), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108), (1,82,28,55)(2,81,29,108)(3,80,30,107)(4,79,31,106)(5,78,32,105)(6,77,33,104)(7,76,34,103)(8,75,35,102)(9,74,36,101)(10,73,37,100)(11,72,38,99)(12,71,39,98)(13,70,40,97)(14,69,41,96)(15,68,42,95)(16,67,43,94)(17,66,44,93)(18,65,45,92)(19,64,46,91)(20,63,47,90)(21,62,48,89)(22,61,49,88)(23,60,50,87)(24,59,51,86)(25,58,52,85)(26,57,53,84)(27,56,54,83)>;
G:=Group( (1,19,37)(2,20,38)(3,21,39)(4,22,40)(5,23,41)(6,24,42)(7,25,43)(8,26,44)(9,27,45)(10,28,46)(11,29,47)(12,30,48)(13,31,49)(14,32,50)(15,33,51)(16,34,52)(17,35,53)(18,36,54)(55,91,73)(56,92,74)(57,93,75)(58,94,76)(59,95,77)(60,96,78)(61,97,79)(62,98,80)(63,99,81)(64,100,82)(65,101,83)(66,102,84)(67,103,85)(68,104,86)(69,105,87)(70,106,88)(71,107,89)(72,108,90), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108), (1,82,28,55)(2,81,29,108)(3,80,30,107)(4,79,31,106)(5,78,32,105)(6,77,33,104)(7,76,34,103)(8,75,35,102)(9,74,36,101)(10,73,37,100)(11,72,38,99)(12,71,39,98)(13,70,40,97)(14,69,41,96)(15,68,42,95)(16,67,43,94)(17,66,44,93)(18,65,45,92)(19,64,46,91)(20,63,47,90)(21,62,48,89)(22,61,49,88)(23,60,50,87)(24,59,51,86)(25,58,52,85)(26,57,53,84)(27,56,54,83) );
G=PermutationGroup([[(1,19,37),(2,20,38),(3,21,39),(4,22,40),(5,23,41),(6,24,42),(7,25,43),(8,26,44),(9,27,45),(10,28,46),(11,29,47),(12,30,48),(13,31,49),(14,32,50),(15,33,51),(16,34,52),(17,35,53),(18,36,54),(55,91,73),(56,92,74),(57,93,75),(58,94,76),(59,95,77),(60,96,78),(61,97,79),(62,98,80),(63,99,81),(64,100,82),(65,101,83),(66,102,84),(67,103,85),(68,104,86),(69,105,87),(70,106,88),(71,107,89),(72,108,90)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)], [(1,82,28,55),(2,81,29,108),(3,80,30,107),(4,79,31,106),(5,78,32,105),(6,77,33,104),(7,76,34,103),(8,75,35,102),(9,74,36,101),(10,73,37,100),(11,72,38,99),(12,71,39,98),(13,70,40,97),(14,69,41,96),(15,68,42,95),(16,67,43,94),(17,66,44,93),(18,65,45,92),(19,64,46,91),(20,63,47,90),(21,62,48,89),(22,61,49,88),(23,60,50,87),(24,59,51,86),(25,58,52,85),(26,57,53,84),(27,56,54,83)]])
90 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 9A | ··· | 9I | 12A | 12B | 12C | 12D | 18A | ··· | 18I | 27A | ··· | 27AA | 54A | ··· | 54AA |
order | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 9 | ··· | 9 | 12 | 12 | 12 | 12 | 18 | ··· | 18 | 27 | ··· | 27 | 54 | ··· | 54 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 27 | 27 | 1 | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 27 | 27 | 27 | 27 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
90 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | - | + | - | + | - | ||||||||||
image | C1 | C2 | C3 | C4 | C6 | C12 | S3 | Dic3 | C3×S3 | D9 | C3×Dic3 | Dic9 | D27 | C3×D9 | Dic27 | C3×Dic9 | C3×D27 | C3×Dic27 |
kernel | C3×Dic27 | C3×C54 | Dic27 | C3×C27 | C54 | C27 | C3×C18 | C3×C9 | C18 | C3×C6 | C9 | C32 | C6 | C6 | C3 | C3 | C2 | C1 |
# reps | 1 | 1 | 2 | 2 | 2 | 4 | 1 | 1 | 2 | 3 | 2 | 3 | 9 | 6 | 9 | 6 | 18 | 18 |
Matrix representation of C3×Dic27 ►in GL3(𝔽109) generated by
45 | 0 | 0 |
0 | 45 | 0 |
0 | 0 | 45 |
108 | 0 | 0 |
0 | 26 | 0 |
0 | 106 | 21 |
76 | 0 | 0 |
0 | 59 | 62 |
0 | 81 | 50 |
G:=sub<GL(3,GF(109))| [45,0,0,0,45,0,0,0,45],[108,0,0,0,26,106,0,0,21],[76,0,0,0,59,81,0,62,50] >;
C3×Dic27 in GAP, Magma, Sage, TeX
C_3\times {\rm Dic}_{27}
% in TeX
G:=Group("C3xDic27");
// GroupNames label
G:=SmallGroup(324,10);
// by ID
G=gap.SmallGroup(324,10);
# by ID
G:=PCGroup([6,-2,-3,-2,-3,-3,-3,36,1443,381,5404,208,7781]);
// Polycyclic
G:=Group<a,b,c|a^3=b^54=1,c^2=b^27,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export