Extensions 1→N→G→Q→1 with N=C2×C4 and Q=S3×C7

Direct product G=N×Q with N=C2×C4 and Q=S3×C7
dρLabelID
S3×C2×C28168S3xC2xC28336,185

Semidirect products G=N:Q with N=C2×C4 and Q=S3×C7
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊1(S3×C7) = C7×D6⋊C4φ: S3×C7/C21C2 ⊆ Aut C2×C4168(C2xC4):1(S3xC7)336,84
(C2×C4)⋊2(S3×C7) = C14×D12φ: S3×C7/C21C2 ⊆ Aut C2×C4168(C2xC4):2(S3xC7)336,186
(C2×C4)⋊3(S3×C7) = C7×C4○D12φ: S3×C7/C21C2 ⊆ Aut C2×C41682(C2xC4):3(S3xC7)336,187

Non-split extensions G=N.Q with N=C2×C4 and Q=S3×C7
extensionφ:Q→Aut NdρLabelID
(C2×C4).1(S3×C7) = C7×Dic3⋊C4φ: S3×C7/C21C2 ⊆ Aut C2×C4336(C2xC4).1(S3xC7)336,82
(C2×C4).2(S3×C7) = C7×C4.Dic3φ: S3×C7/C21C2 ⊆ Aut C2×C41682(C2xC4).2(S3xC7)336,80
(C2×C4).3(S3×C7) = C7×C4⋊Dic3φ: S3×C7/C21C2 ⊆ Aut C2×C4336(C2xC4).3(S3xC7)336,83
(C2×C4).4(S3×C7) = C14×Dic6φ: S3×C7/C21C2 ⊆ Aut C2×C4336(C2xC4).4(S3xC7)336,184
(C2×C4).5(S3×C7) = C14×C3⋊C8central extension (φ=1)336(C2xC4).5(S3xC7)336,79
(C2×C4).6(S3×C7) = Dic3×C28central extension (φ=1)336(C2xC4).6(S3xC7)336,81

׿
×
𝔽