Copied to
clipboard

G = C14×D12order 336 = 24·3·7

Direct product of C14 and D12

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C14×D12, C289D6, C426D4, C8412C22, C42.50C23, C61(C7×D4), C31(D4×C14), C42(S3×C14), (C2×C28)⋊6S3, C2112(C2×D4), (C2×C84)⋊11C2, C122(C2×C14), (C2×C12)⋊3C14, D61(C2×C14), (C2×C14).38D6, (S3×C14)⋊9C22, (C22×S3)⋊1C14, C6.3(C22×C14), (C2×C42).49C22, C22.10(S3×C14), C14.40(C22×S3), (S3×C2×C14)⋊5C2, (C2×C4)⋊2(S3×C7), C2.4(S3×C2×C14), (C2×C6).10(C2×C14), SmallGroup(336,186)

Series: Derived Chief Lower central Upper central

C1C6 — C14×D12
C1C3C6C42S3×C14S3×C2×C14 — C14×D12
C3C6 — C14×D12
C1C2×C14C2×C28

Generators and relations for C14×D12
 G = < a,b,c | a14=b12=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 248 in 108 conjugacy classes, 54 normal (18 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, S3, C6, C6, C7, C2×C4, D4, C23, C12, D6, D6, C2×C6, C14, C14, C14, C2×D4, C21, D12, C2×C12, C22×S3, C28, C2×C14, C2×C14, S3×C7, C42, C42, C2×D12, C2×C28, C7×D4, C22×C14, C84, S3×C14, S3×C14, C2×C42, D4×C14, C7×D12, C2×C84, S3×C2×C14, C14×D12
Quotients: C1, C2, C22, S3, C7, D4, C23, D6, C14, C2×D4, D12, C22×S3, C2×C14, S3×C7, C2×D12, C7×D4, C22×C14, S3×C14, D4×C14, C7×D12, S3×C2×C14, C14×D12

Smallest permutation representation of C14×D12
On 168 points
Generators in S168
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154)(155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 50 92 114 31 78 142 160 112 62 130 20)(2 51 93 115 32 79 143 161 99 63 131 21)(3 52 94 116 33 80 144 162 100 64 132 22)(4 53 95 117 34 81 145 163 101 65 133 23)(5 54 96 118 35 82 146 164 102 66 134 24)(6 55 97 119 36 83 147 165 103 67 135 25)(7 56 98 120 37 84 148 166 104 68 136 26)(8 43 85 121 38 71 149 167 105 69 137 27)(9 44 86 122 39 72 150 168 106 70 138 28)(10 45 87 123 40 73 151 155 107 57 139 15)(11 46 88 124 41 74 152 156 108 58 140 16)(12 47 89 125 42 75 153 157 109 59 127 17)(13 48 90 126 29 76 154 158 110 60 128 18)(14 49 91 113 30 77 141 159 111 61 129 19)
(1 20)(2 21)(3 22)(4 23)(5 24)(6 25)(7 26)(8 27)(9 28)(10 15)(11 16)(12 17)(13 18)(14 19)(29 158)(30 159)(31 160)(32 161)(33 162)(34 163)(35 164)(36 165)(37 166)(38 167)(39 168)(40 155)(41 156)(42 157)(43 137)(44 138)(45 139)(46 140)(47 127)(48 128)(49 129)(50 130)(51 131)(52 132)(53 133)(54 134)(55 135)(56 136)(57 87)(58 88)(59 89)(60 90)(61 91)(62 92)(63 93)(64 94)(65 95)(66 96)(67 97)(68 98)(69 85)(70 86)(71 149)(72 150)(73 151)(74 152)(75 153)(76 154)(77 141)(78 142)(79 143)(80 144)(81 145)(82 146)(83 147)(84 148)(99 115)(100 116)(101 117)(102 118)(103 119)(104 120)(105 121)(106 122)(107 123)(108 124)(109 125)(110 126)(111 113)(112 114)

G:=sub<Sym(168)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,50,92,114,31,78,142,160,112,62,130,20)(2,51,93,115,32,79,143,161,99,63,131,21)(3,52,94,116,33,80,144,162,100,64,132,22)(4,53,95,117,34,81,145,163,101,65,133,23)(5,54,96,118,35,82,146,164,102,66,134,24)(6,55,97,119,36,83,147,165,103,67,135,25)(7,56,98,120,37,84,148,166,104,68,136,26)(8,43,85,121,38,71,149,167,105,69,137,27)(9,44,86,122,39,72,150,168,106,70,138,28)(10,45,87,123,40,73,151,155,107,57,139,15)(11,46,88,124,41,74,152,156,108,58,140,16)(12,47,89,125,42,75,153,157,109,59,127,17)(13,48,90,126,29,76,154,158,110,60,128,18)(14,49,91,113,30,77,141,159,111,61,129,19), (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,15)(11,16)(12,17)(13,18)(14,19)(29,158)(30,159)(31,160)(32,161)(33,162)(34,163)(35,164)(36,165)(37,166)(38,167)(39,168)(40,155)(41,156)(42,157)(43,137)(44,138)(45,139)(46,140)(47,127)(48,128)(49,129)(50,130)(51,131)(52,132)(53,133)(54,134)(55,135)(56,136)(57,87)(58,88)(59,89)(60,90)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,97)(68,98)(69,85)(70,86)(71,149)(72,150)(73,151)(74,152)(75,153)(76,154)(77,141)(78,142)(79,143)(80,144)(81,145)(82,146)(83,147)(84,148)(99,115)(100,116)(101,117)(102,118)(103,119)(104,120)(105,121)(106,122)(107,123)(108,124)(109,125)(110,126)(111,113)(112,114)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,50,92,114,31,78,142,160,112,62,130,20)(2,51,93,115,32,79,143,161,99,63,131,21)(3,52,94,116,33,80,144,162,100,64,132,22)(4,53,95,117,34,81,145,163,101,65,133,23)(5,54,96,118,35,82,146,164,102,66,134,24)(6,55,97,119,36,83,147,165,103,67,135,25)(7,56,98,120,37,84,148,166,104,68,136,26)(8,43,85,121,38,71,149,167,105,69,137,27)(9,44,86,122,39,72,150,168,106,70,138,28)(10,45,87,123,40,73,151,155,107,57,139,15)(11,46,88,124,41,74,152,156,108,58,140,16)(12,47,89,125,42,75,153,157,109,59,127,17)(13,48,90,126,29,76,154,158,110,60,128,18)(14,49,91,113,30,77,141,159,111,61,129,19), (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,15)(11,16)(12,17)(13,18)(14,19)(29,158)(30,159)(31,160)(32,161)(33,162)(34,163)(35,164)(36,165)(37,166)(38,167)(39,168)(40,155)(41,156)(42,157)(43,137)(44,138)(45,139)(46,140)(47,127)(48,128)(49,129)(50,130)(51,131)(52,132)(53,133)(54,134)(55,135)(56,136)(57,87)(58,88)(59,89)(60,90)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,97)(68,98)(69,85)(70,86)(71,149)(72,150)(73,151)(74,152)(75,153)(76,154)(77,141)(78,142)(79,143)(80,144)(81,145)(82,146)(83,147)(84,148)(99,115)(100,116)(101,117)(102,118)(103,119)(104,120)(105,121)(106,122)(107,123)(108,124)(109,125)(110,126)(111,113)(112,114) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154),(155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,50,92,114,31,78,142,160,112,62,130,20),(2,51,93,115,32,79,143,161,99,63,131,21),(3,52,94,116,33,80,144,162,100,64,132,22),(4,53,95,117,34,81,145,163,101,65,133,23),(5,54,96,118,35,82,146,164,102,66,134,24),(6,55,97,119,36,83,147,165,103,67,135,25),(7,56,98,120,37,84,148,166,104,68,136,26),(8,43,85,121,38,71,149,167,105,69,137,27),(9,44,86,122,39,72,150,168,106,70,138,28),(10,45,87,123,40,73,151,155,107,57,139,15),(11,46,88,124,41,74,152,156,108,58,140,16),(12,47,89,125,42,75,153,157,109,59,127,17),(13,48,90,126,29,76,154,158,110,60,128,18),(14,49,91,113,30,77,141,159,111,61,129,19)], [(1,20),(2,21),(3,22),(4,23),(5,24),(6,25),(7,26),(8,27),(9,28),(10,15),(11,16),(12,17),(13,18),(14,19),(29,158),(30,159),(31,160),(32,161),(33,162),(34,163),(35,164),(36,165),(37,166),(38,167),(39,168),(40,155),(41,156),(42,157),(43,137),(44,138),(45,139),(46,140),(47,127),(48,128),(49,129),(50,130),(51,131),(52,132),(53,133),(54,134),(55,135),(56,136),(57,87),(58,88),(59,89),(60,90),(61,91),(62,92),(63,93),(64,94),(65,95),(66,96),(67,97),(68,98),(69,85),(70,86),(71,149),(72,150),(73,151),(74,152),(75,153),(76,154),(77,141),(78,142),(79,143),(80,144),(81,145),(82,146),(83,147),(84,148),(99,115),(100,116),(101,117),(102,118),(103,119),(104,120),(105,121),(106,122),(107,123),(108,124),(109,125),(110,126),(111,113),(112,114)]])

126 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B6A6B6C7A···7F12A12B12C12D14A···14R14S···14AP21A···21F28A···28L42A···42R84A···84X
order122222223446667···71212121214···1414···1421···2128···2842···4284···84
size111166662222221···122221···16···62···22···22···22···2

126 irreducible representations

dim111111112222222222
type+++++++++
imageC1C2C2C2C7C14C14C14S3D4D6D6D12S3×C7C7×D4S3×C14S3×C14C7×D12
kernelC14×D12C7×D12C2×C84S3×C2×C14C2×D12D12C2×C12C22×S3C2×C28C42C28C2×C14C14C2×C4C6C4C22C2
# reps14126246121221461212624

Matrix representation of C14×D12 in GL5(𝔽337)

3360000
042000
004200
000520
000052
,
10000
032726400
061000
00011
0003360
,
3360000
01018500
033132700
00011
0000336

G:=sub<GL(5,GF(337))| [336,0,0,0,0,0,42,0,0,0,0,0,42,0,0,0,0,0,52,0,0,0,0,0,52],[1,0,0,0,0,0,327,6,0,0,0,264,10,0,0,0,0,0,1,336,0,0,0,1,0],[336,0,0,0,0,0,10,331,0,0,0,185,327,0,0,0,0,0,1,0,0,0,0,1,336] >;

C14×D12 in GAP, Magma, Sage, TeX

C_{14}\times D_{12}
% in TeX

G:=Group("C14xD12");
// GroupNames label

G:=SmallGroup(336,186);
// by ID

G=gap.SmallGroup(336,186);
# by ID

G:=PCGroup([6,-2,-2,-2,-7,-2,-3,1082,266,8069]);
// Polycyclic

G:=Group<a,b,c|a^14=b^12=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽