Extensions 1→N→G→Q→1 with N=C2×Dic7 and Q=S3

Direct product G=N×Q with N=C2×Dic7 and Q=S3
dρLabelID
C2×S3×Dic7168C2xS3xDic7336,154

Semidirect products G=N:Q with N=C2×Dic7 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2×Dic7)⋊1S3 = D6⋊Dic7φ: S3/C3C2 ⊆ Out C2×Dic7168(C2xDic7):1S3336,43
(C2×Dic7)⋊2S3 = D42⋊C4φ: S3/C3C2 ⊆ Out C2×Dic7168(C2xDic7):2S3336,44
(C2×Dic7)⋊3S3 = Dic3.D14φ: S3/C3C2 ⊆ Out C2×Dic71684(C2xDic7):3S3336,155
(C2×Dic7)⋊4S3 = C2×C7⋊D12φ: S3/C3C2 ⊆ Out C2×Dic7168(C2xDic7):4S3336,159
(C2×Dic7)⋊5S3 = C2×D21⋊C4φ: trivial image168(C2xDic7):5S3336,156

Non-split extensions G=N.Q with N=C2×Dic7 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2×Dic7).1S3 = C42.Q8φ: S3/C3C2 ⊆ Out C2×Dic7336(C2xDic7).1S3336,45
(C2×Dic7).2S3 = Dic21⋊C4φ: S3/C3C2 ⊆ Out C2×Dic7336(C2xDic7).2S3336,46
(C2×Dic7).3S3 = C14.Dic6φ: S3/C3C2 ⊆ Out C2×Dic7336(C2xDic7).3S3336,47
(C2×Dic7).4S3 = C2×C21⋊Q8φ: S3/C3C2 ⊆ Out C2×Dic7336(C2xDic7).4S3336,160
(C2×Dic7).5S3 = Dic3×Dic7φ: trivial image336(C2xDic7).5S3336,41

׿
×
𝔽