Extensions 1→N→G→Q→1 with N=C2×C6 and Q=He3

Direct product G=N×Q with N=C2×C6 and Q=He3
dρLabelID
C2×C6×He3108C2xC6xHe3324,152

Semidirect products G=N:Q with N=C2×C6 and Q=He3
extensionφ:Q→Aut NdρLabelID
(C2×C6)⋊He3 = C3×C32⋊A4φ: He3/C32C3 ⊆ Aut C2×C654(C2xC6):He3324,135

Non-split extensions G=N.Q with N=C2×C6 and Q=He3
extensionφ:Q→Aut NdρLabelID
(C2×C6).1He3 = C62.13C32φ: He3/C32C3 ⊆ Aut C2×C6543(C2xC6).1He3324,49
(C2×C6).2He3 = C62.14C32φ: He3/C32C3 ⊆ Aut C2×C6543(C2xC6).2He3324,50
(C2×C6).3He3 = C62.15C32φ: He3/C32C3 ⊆ Aut C2×C6543(C2xC6).3He3324,51
(C2×C6).4He3 = C62.16C32φ: He3/C32C3 ⊆ Aut C2×C6108(C2xC6).4He3324,52
(C2×C6).5He3 = He3.A4φ: He3/C32C3 ⊆ Aut C2×C6549(C2xC6).5He3324,53
(C2×C6).6He3 = He3⋊A4φ: He3/C32C3 ⊆ Aut C2×C6549(C2xC6).6He3324,54
(C2×C6).7He3 = He32A4φ: He3/C32C3 ⊆ Aut C2×C6369(C2xC6).7He3324,55
(C2×C6).8He3 = C62.C32φ: He3/C32C3 ⊆ Aut C2×C6549(C2xC6).8He3324,56
(C2×C6).9He3 = 3- 1+2⋊A4φ: He3/C32C3 ⊆ Aut C2×C6549(C2xC6).9He3324,57
(C2×C6).10He3 = C62.6C32φ: He3/C32C3 ⊆ Aut C2×C6369(C2xC6).10He3324,58
(C2×C6).11He3 = C62⋊C9φ: He3/C32C3 ⊆ Aut C2×C654(C2xC6).11He3324,59
(C2×C6).12He3 = C332A4φ: He3/C32C3 ⊆ Aut C2×C6183(C2xC6).12He3324,60
(C2×C6).13He3 = C22×C32⋊C9central extension (φ=1)108(C2xC6).13He3324,82
(C2×C6).14He3 = C22×C3≀C3central extension (φ=1)36(C2xC6).14He3324,86
(C2×C6).15He3 = C22×He3.C3central extension (φ=1)108(C2xC6).15He3324,87
(C2×C6).16He3 = C22×He3⋊C3central extension (φ=1)108(C2xC6).16He3324,88
(C2×C6).17He3 = C22×C3.He3central extension (φ=1)108(C2xC6).17He3324,89

׿
×
𝔽