Extensions 1→N→G→Q→1 with N=C6 and Q=C9⋊S3

Direct product G=N×Q with N=C6 and Q=C9⋊S3
dρLabelID
C6×C9⋊S3108C6xC9:S3324,142

Semidirect products G=N:Q with N=C6 and Q=C9⋊S3
extensionφ:Q→Aut NdρLabelID
C6⋊(C9⋊S3) = C2×C324D9φ: C9⋊S3/C3×C9C2 ⊆ Aut C6162C6:(C9:S3)324,149

Non-split extensions G=N.Q with N=C6 and Q=C9⋊S3
extensionφ:Q→Aut NdρLabelID
C6.1(C9⋊S3) = C9⋊Dic9φ: C9⋊S3/C3×C9C2 ⊆ Aut C6324C6.1(C9:S3)324,19
C6.2(C9⋊S3) = C27⋊Dic3φ: C9⋊S3/C3×C9C2 ⊆ Aut C6324C6.2(C9:S3)324,21
C6.3(C9⋊S3) = C2×C9⋊D9φ: C9⋊S3/C3×C9C2 ⊆ Aut C6162C6.3(C9:S3)324,74
C6.4(C9⋊S3) = C2×C27⋊S3φ: C9⋊S3/C3×C9C2 ⊆ Aut C6162C6.4(C9:S3)324,76
C6.5(C9⋊S3) = C325Dic9φ: C9⋊S3/C3×C9C2 ⊆ Aut C6324C6.5(C9:S3)324,103
C6.6(C9⋊S3) = C322Dic9central extension (φ=1)366C6.6(C9:S3)324,20
C6.7(C9⋊S3) = C2×C322D9central extension (φ=1)366C6.7(C9:S3)324,75
C6.8(C9⋊S3) = C3×C9⋊Dic3central extension (φ=1)108C6.8(C9:S3)324,96

׿
×
𝔽