Extensions 1→N→G→Q→1 with N=C22 and Q=SD16

Direct product G=N×Q with N=C22 and Q=SD16
dρLabelID
SD16×C22176SD16xC22352,168

Semidirect products G=N:Q with N=C22 and Q=SD16
extensionφ:Q→Aut NdρLabelID
C221SD16 = C2×C8⋊D11φ: SD16/C8C2 ⊆ Aut C22176C22:1SD16352,97
C222SD16 = C2×D4.D11φ: SD16/D4C2 ⊆ Aut C22176C22:2SD16352,128
C223SD16 = C2×Q8⋊D11φ: SD16/Q8C2 ⊆ Aut C22176C22:3SD16352,136

Non-split extensions G=N.Q with N=C22 and Q=SD16
extensionφ:Q→Aut NdρLabelID
C22.1SD16 = C44.44D4φ: SD16/C8C2 ⊆ Aut C22352C22.1SD16352,22
C22.2SD16 = C44.4Q8φ: SD16/C8C2 ⊆ Aut C22352C22.2SD16352,23
C22.3SD16 = C2.D88φ: SD16/C8C2 ⊆ Aut C22176C22.3SD16352,27
C22.4SD16 = C4.Dic22φ: SD16/D4C2 ⊆ Aut C22352C22.4SD16352,14
C22.5SD16 = C22.Q16φ: SD16/D4C2 ⊆ Aut C22352C22.5SD16352,16
C22.6SD16 = D4⋊Dic11φ: SD16/D4C2 ⊆ Aut C22176C22.6SD16352,38
C22.7SD16 = C22.D8φ: SD16/Q8C2 ⊆ Aut C22176C22.7SD16352,15
C22.8SD16 = Q8⋊Dic11φ: SD16/Q8C2 ⊆ Aut C22352C22.8SD16352,41
C22.9SD16 = C11×D4⋊C4central extension (φ=1)176C22.9SD16352,51
C22.10SD16 = C11×Q8⋊C4central extension (φ=1)352C22.10SD16352,52
C22.11SD16 = C11×C4.Q8central extension (φ=1)352C22.11SD16352,55

׿
×
𝔽