Extensions 1→N→G→Q→1 with N=C2×D44 and Q=C2

Direct product G=N×Q with N=C2×D44 and Q=C2
dρLabelID
C22×D44176C2^2xD44352,175

Semidirect products G=N:Q with N=C2×D44 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D44)⋊1C2 = C4⋊D44φ: C2/C1C2 ⊆ Out C2×D44176(C2xD44):1C2352,69
(C2×D44)⋊2C2 = C22⋊D44φ: C2/C1C2 ⊆ Out C2×D4488(C2xD44):2C2352,77
(C2×D44)⋊3C2 = D22⋊D4φ: C2/C1C2 ⊆ Out C2×D44176(C2xD44):3C2352,79
(C2×D44)⋊4C2 = C42D44φ: C2/C1C2 ⊆ Out C2×D44176(C2xD44):4C2352,90
(C2×D44)⋊5C2 = C2×D88φ: C2/C1C2 ⊆ Out C2×D44176(C2xD44):5C2352,98
(C2×D44)⋊6C2 = C447D4φ: C2/C1C2 ⊆ Out C2×D44176(C2xD44):6C2352,125
(C2×D44)⋊7C2 = C8⋊D22φ: C2/C1C2 ⊆ Out C2×D44884+(C2xD44):7C2352,103
(C2×D44)⋊8C2 = C2×D4⋊D11φ: C2/C1C2 ⊆ Out C2×D44176(C2xD44):8C2352,126
(C2×D44)⋊9C2 = C44⋊D4φ: C2/C1C2 ⊆ Out C2×D44176(C2xD44):9C2352,135
(C2×D44)⋊10C2 = Q8⋊D22φ: C2/C1C2 ⊆ Out C2×D44884+(C2xD44):10C2352,144
(C2×D44)⋊11C2 = C2×D4×D11φ: C2/C1C2 ⊆ Out C2×D4488(C2xD44):11C2352,177
(C2×D44)⋊12C2 = C2×D44⋊C2φ: C2/C1C2 ⊆ Out C2×D44176(C2xD44):12C2352,181
(C2×D44)⋊13C2 = D48D22φ: C2/C1C2 ⊆ Out C2×D44884+(C2xD44):13C2352,184
(C2×D44)⋊14C2 = C2×D445C2φ: trivial image176(C2xD44):14C2352,176

Non-split extensions G=N.Q with N=C2×D44 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D44).1C2 = C2.D88φ: C2/C1C2 ⊆ Out C2×D44176(C2xD44).1C2352,27
(C2×D44).2C2 = C4.D44φ: C2/C1C2 ⊆ Out C2×D44176(C2xD44).2C2352,70
(C2×D44).3C2 = D22.5D4φ: C2/C1C2 ⊆ Out C2×D44176(C2xD44).3C2352,89
(C2×D44).4C2 = C2×C8⋊D11φ: C2/C1C2 ⊆ Out C2×D44176(C2xD44).4C2352,97
(C2×D44).5C2 = C22.D8φ: C2/C1C2 ⊆ Out C2×D44176(C2xD44).5C2352,15
(C2×D44).6C2 = C44.46D4φ: C2/C1C2 ⊆ Out C2×D44884+(C2xD44).6C2352,29
(C2×D44).7C2 = D44⋊C4φ: C2/C1C2 ⊆ Out C2×D44176(C2xD44).7C2352,88
(C2×D44).8C2 = C2×Q8⋊D11φ: C2/C1C2 ⊆ Out C2×D44176(C2xD44).8C2352,136
(C2×D44).9C2 = C44.23D4φ: C2/C1C2 ⊆ Out C2×D44176(C2xD44).9C2352,142
(C2×D44).10C2 = C4×D44φ: trivial image176(C2xD44).10C2352,68

׿
×
𝔽