Extensions 1→N→G→Q→1 with N=C2xD44 and Q=C2

Direct product G=NxQ with N=C2xD44 and Q=C2
dρLabelID
C22xD44176C2^2xD44352,175

Semidirect products G=N:Q with N=C2xD44 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xD44):1C2 = C4:D44φ: C2/C1C2 ⊆ Out C2xD44176(C2xD44):1C2352,69
(C2xD44):2C2 = C22:D44φ: C2/C1C2 ⊆ Out C2xD4488(C2xD44):2C2352,77
(C2xD44):3C2 = D22:D4φ: C2/C1C2 ⊆ Out C2xD44176(C2xD44):3C2352,79
(C2xD44):4C2 = C4:2D44φ: C2/C1C2 ⊆ Out C2xD44176(C2xD44):4C2352,90
(C2xD44):5C2 = C2xD88φ: C2/C1C2 ⊆ Out C2xD44176(C2xD44):5C2352,98
(C2xD44):6C2 = C44:7D4φ: C2/C1C2 ⊆ Out C2xD44176(C2xD44):6C2352,125
(C2xD44):7C2 = C8:D22φ: C2/C1C2 ⊆ Out C2xD44884+(C2xD44):7C2352,103
(C2xD44):8C2 = C2xD4:D11φ: C2/C1C2 ⊆ Out C2xD44176(C2xD44):8C2352,126
(C2xD44):9C2 = C44:D4φ: C2/C1C2 ⊆ Out C2xD44176(C2xD44):9C2352,135
(C2xD44):10C2 = Q8:D22φ: C2/C1C2 ⊆ Out C2xD44884+(C2xD44):10C2352,144
(C2xD44):11C2 = C2xD4xD11φ: C2/C1C2 ⊆ Out C2xD4488(C2xD44):11C2352,177
(C2xD44):12C2 = C2xD44:C2φ: C2/C1C2 ⊆ Out C2xD44176(C2xD44):12C2352,181
(C2xD44):13C2 = D4:8D22φ: C2/C1C2 ⊆ Out C2xD44884+(C2xD44):13C2352,184
(C2xD44):14C2 = C2xD44:5C2φ: trivial image176(C2xD44):14C2352,176

Non-split extensions G=N.Q with N=C2xD44 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xD44).1C2 = C2.D88φ: C2/C1C2 ⊆ Out C2xD44176(C2xD44).1C2352,27
(C2xD44).2C2 = C4.D44φ: C2/C1C2 ⊆ Out C2xD44176(C2xD44).2C2352,70
(C2xD44).3C2 = D22.5D4φ: C2/C1C2 ⊆ Out C2xD44176(C2xD44).3C2352,89
(C2xD44).4C2 = C2xC8:D11φ: C2/C1C2 ⊆ Out C2xD44176(C2xD44).4C2352,97
(C2xD44).5C2 = C22.D8φ: C2/C1C2 ⊆ Out C2xD44176(C2xD44).5C2352,15
(C2xD44).6C2 = C44.46D4φ: C2/C1C2 ⊆ Out C2xD44884+(C2xD44).6C2352,29
(C2xD44).7C2 = D44:C4φ: C2/C1C2 ⊆ Out C2xD44176(C2xD44).7C2352,88
(C2xD44).8C2 = C2xQ8:D11φ: C2/C1C2 ⊆ Out C2xD44176(C2xD44).8C2352,136
(C2xD44).9C2 = C44.23D4φ: C2/C1C2 ⊆ Out C2xD44176(C2xD44).9C2352,142
(C2xD44).10C2 = C4xD44φ: trivial image176(C2xD44).10C2352,68

׿
x
:
Z
F
o
wr
Q
<