direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×D44, C4⋊2D22, C22⋊1D4, C44⋊2C22, D22⋊1C22, C22.3C23, C22.10D22, C11⋊1(C2×D4), (C2×C44)⋊3C2, (C2×C4)⋊2D11, (C22×D11)⋊1C2, C2.4(C22×D11), (C2×C22).10C22, SmallGroup(176,29)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×D44
G = < a,b,c | a2=b44=c2=1, ab=ba, ac=ca, cbc=b-1 >
Subgroups: 340 in 54 conjugacy classes, 27 normal (9 characteristic)
C1, C2, C2, C2, C4, C22, C22, C2×C4, D4, C23, C11, C2×D4, D11, C22, C22, C44, D22, D22, C2×C22, D44, C2×C44, C22×D11, C2×D44
Quotients: C1, C2, C22, D4, C23, C2×D4, D11, D22, D44, C22×D11, C2×D44
(1 87)(2 88)(3 45)(4 46)(5 47)(6 48)(7 49)(8 50)(9 51)(10 52)(11 53)(12 54)(13 55)(14 56)(15 57)(16 58)(17 59)(18 60)(19 61)(20 62)(21 63)(22 64)(23 65)(24 66)(25 67)(26 68)(27 69)(28 70)(29 71)(30 72)(31 73)(32 74)(33 75)(34 76)(35 77)(36 78)(37 79)(38 80)(39 81)(40 82)(41 83)(42 84)(43 85)(44 86)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)
(1 44)(2 43)(3 42)(4 41)(5 40)(6 39)(7 38)(8 37)(9 36)(10 35)(11 34)(12 33)(13 32)(14 31)(15 30)(16 29)(17 28)(18 27)(19 26)(20 25)(21 24)(22 23)(45 84)(46 83)(47 82)(48 81)(49 80)(50 79)(51 78)(52 77)(53 76)(54 75)(55 74)(56 73)(57 72)(58 71)(59 70)(60 69)(61 68)(62 67)(63 66)(64 65)(85 88)(86 87)
G:=sub<Sym(88)| (1,87)(2,88)(3,45)(4,46)(5,47)(6,48)(7,49)(8,50)(9,51)(10,52)(11,53)(12,54)(13,55)(14,56)(15,57)(16,58)(17,59)(18,60)(19,61)(20,62)(21,63)(22,64)(23,65)(24,66)(25,67)(26,68)(27,69)(28,70)(29,71)(30,72)(31,73)(32,74)(33,75)(34,76)(35,77)(36,78)(37,79)(38,80)(39,81)(40,82)(41,83)(42,84)(43,85)(44,86), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88), (1,44)(2,43)(3,42)(4,41)(5,40)(6,39)(7,38)(8,37)(9,36)(10,35)(11,34)(12,33)(13,32)(14,31)(15,30)(16,29)(17,28)(18,27)(19,26)(20,25)(21,24)(22,23)(45,84)(46,83)(47,82)(48,81)(49,80)(50,79)(51,78)(52,77)(53,76)(54,75)(55,74)(56,73)(57,72)(58,71)(59,70)(60,69)(61,68)(62,67)(63,66)(64,65)(85,88)(86,87)>;
G:=Group( (1,87)(2,88)(3,45)(4,46)(5,47)(6,48)(7,49)(8,50)(9,51)(10,52)(11,53)(12,54)(13,55)(14,56)(15,57)(16,58)(17,59)(18,60)(19,61)(20,62)(21,63)(22,64)(23,65)(24,66)(25,67)(26,68)(27,69)(28,70)(29,71)(30,72)(31,73)(32,74)(33,75)(34,76)(35,77)(36,78)(37,79)(38,80)(39,81)(40,82)(41,83)(42,84)(43,85)(44,86), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88), (1,44)(2,43)(3,42)(4,41)(5,40)(6,39)(7,38)(8,37)(9,36)(10,35)(11,34)(12,33)(13,32)(14,31)(15,30)(16,29)(17,28)(18,27)(19,26)(20,25)(21,24)(22,23)(45,84)(46,83)(47,82)(48,81)(49,80)(50,79)(51,78)(52,77)(53,76)(54,75)(55,74)(56,73)(57,72)(58,71)(59,70)(60,69)(61,68)(62,67)(63,66)(64,65)(85,88)(86,87) );
G=PermutationGroup([[(1,87),(2,88),(3,45),(4,46),(5,47),(6,48),(7,49),(8,50),(9,51),(10,52),(11,53),(12,54),(13,55),(14,56),(15,57),(16,58),(17,59),(18,60),(19,61),(20,62),(21,63),(22,64),(23,65),(24,66),(25,67),(26,68),(27,69),(28,70),(29,71),(30,72),(31,73),(32,74),(33,75),(34,76),(35,77),(36,78),(37,79),(38,80),(39,81),(40,82),(41,83),(42,84),(43,85),(44,86)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)], [(1,44),(2,43),(3,42),(4,41),(5,40),(6,39),(7,38),(8,37),(9,36),(10,35),(11,34),(12,33),(13,32),(14,31),(15,30),(16,29),(17,28),(18,27),(19,26),(20,25),(21,24),(22,23),(45,84),(46,83),(47,82),(48,81),(49,80),(50,79),(51,78),(52,77),(53,76),(54,75),(55,74),(56,73),(57,72),(58,71),(59,70),(60,69),(61,68),(62,67),(63,66),(64,65),(85,88),(86,87)]])
C2×D44 is a maximal subgroup of
C22.D8 C2.D88 C44.46D4 C4⋊D44 C4.D44 C22⋊D44 D22⋊D4 D44⋊C4 D22.5D4 C4⋊2D44 C8⋊D22 C44⋊7D4 C44⋊D4 C44.23D4 Q8⋊D22 C2×D4×D11 D4⋊8D22
C2×D44 is a maximal quotient of
C44⋊2Q8 C4⋊D44 C4.D44 C22⋊D44 C22.D44 C4⋊2D44 D22⋊2Q8 D88⋊7C2 C8⋊D22 C8.D22 C44⋊7D4
50 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 11A | ··· | 11E | 22A | ··· | 22O | 44A | ··· | 44T |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 11 | ··· | 11 | 22 | ··· | 22 | 44 | ··· | 44 |
size | 1 | 1 | 1 | 1 | 22 | 22 | 22 | 22 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | D4 | D11 | D22 | D22 | D44 |
kernel | C2×D44 | D44 | C2×C44 | C22×D11 | C22 | C2×C4 | C4 | C22 | C2 |
# reps | 1 | 4 | 1 | 2 | 2 | 5 | 10 | 5 | 20 |
Matrix representation of C2×D44 ►in GL4(𝔽89) generated by
88 | 0 | 0 | 0 |
0 | 88 | 0 | 0 |
0 | 0 | 88 | 0 |
0 | 0 | 0 | 88 |
44 | 17 | 0 | 0 |
72 | 42 | 0 | 0 |
0 | 0 | 52 | 54 |
0 | 0 | 60 | 88 |
44 | 17 | 0 | 0 |
38 | 45 | 0 | 0 |
0 | 0 | 8 | 74 |
0 | 0 | 22 | 81 |
G:=sub<GL(4,GF(89))| [88,0,0,0,0,88,0,0,0,0,88,0,0,0,0,88],[44,72,0,0,17,42,0,0,0,0,52,60,0,0,54,88],[44,38,0,0,17,45,0,0,0,0,8,22,0,0,74,81] >;
C2×D44 in GAP, Magma, Sage, TeX
C_2\times D_{44}
% in TeX
G:=Group("C2xD44");
// GroupNames label
G:=SmallGroup(176,29);
// by ID
G=gap.SmallGroup(176,29);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-11,182,42,4004]);
// Polycyclic
G:=Group<a,b,c|a^2=b^44=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations