Copied to
clipboard

G = C2×D44order 176 = 24·11

Direct product of C2 and D44

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D44, C42D22, C221D4, C442C22, D221C22, C22.3C23, C22.10D22, C111(C2×D4), (C2×C44)⋊3C2, (C2×C4)⋊2D11, (C22×D11)⋊1C2, C2.4(C22×D11), (C2×C22).10C22, SmallGroup(176,29)

Series: Derived Chief Lower central Upper central

C1C22 — C2×D44
C1C11C22D22C22×D11 — C2×D44
C11C22 — C2×D44
C1C22C2×C4

Generators and relations for C2×D44
 G = < a,b,c | a2=b44=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 340 in 54 conjugacy classes, 27 normal (9 characteristic)
C1, C2, C2, C2, C4, C22, C22, C2×C4, D4, C23, C11, C2×D4, D11, C22, C22, C44, D22, D22, C2×C22, D44, C2×C44, C22×D11, C2×D44
Quotients: C1, C2, C22, D4, C23, C2×D4, D11, D22, D44, C22×D11, C2×D44

Smallest permutation representation of C2×D44
On 88 points
Generators in S88
(1 87)(2 88)(3 45)(4 46)(5 47)(6 48)(7 49)(8 50)(9 51)(10 52)(11 53)(12 54)(13 55)(14 56)(15 57)(16 58)(17 59)(18 60)(19 61)(20 62)(21 63)(22 64)(23 65)(24 66)(25 67)(26 68)(27 69)(28 70)(29 71)(30 72)(31 73)(32 74)(33 75)(34 76)(35 77)(36 78)(37 79)(38 80)(39 81)(40 82)(41 83)(42 84)(43 85)(44 86)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)
(1 44)(2 43)(3 42)(4 41)(5 40)(6 39)(7 38)(8 37)(9 36)(10 35)(11 34)(12 33)(13 32)(14 31)(15 30)(16 29)(17 28)(18 27)(19 26)(20 25)(21 24)(22 23)(45 84)(46 83)(47 82)(48 81)(49 80)(50 79)(51 78)(52 77)(53 76)(54 75)(55 74)(56 73)(57 72)(58 71)(59 70)(60 69)(61 68)(62 67)(63 66)(64 65)(85 88)(86 87)

G:=sub<Sym(88)| (1,87)(2,88)(3,45)(4,46)(5,47)(6,48)(7,49)(8,50)(9,51)(10,52)(11,53)(12,54)(13,55)(14,56)(15,57)(16,58)(17,59)(18,60)(19,61)(20,62)(21,63)(22,64)(23,65)(24,66)(25,67)(26,68)(27,69)(28,70)(29,71)(30,72)(31,73)(32,74)(33,75)(34,76)(35,77)(36,78)(37,79)(38,80)(39,81)(40,82)(41,83)(42,84)(43,85)(44,86), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88), (1,44)(2,43)(3,42)(4,41)(5,40)(6,39)(7,38)(8,37)(9,36)(10,35)(11,34)(12,33)(13,32)(14,31)(15,30)(16,29)(17,28)(18,27)(19,26)(20,25)(21,24)(22,23)(45,84)(46,83)(47,82)(48,81)(49,80)(50,79)(51,78)(52,77)(53,76)(54,75)(55,74)(56,73)(57,72)(58,71)(59,70)(60,69)(61,68)(62,67)(63,66)(64,65)(85,88)(86,87)>;

G:=Group( (1,87)(2,88)(3,45)(4,46)(5,47)(6,48)(7,49)(8,50)(9,51)(10,52)(11,53)(12,54)(13,55)(14,56)(15,57)(16,58)(17,59)(18,60)(19,61)(20,62)(21,63)(22,64)(23,65)(24,66)(25,67)(26,68)(27,69)(28,70)(29,71)(30,72)(31,73)(32,74)(33,75)(34,76)(35,77)(36,78)(37,79)(38,80)(39,81)(40,82)(41,83)(42,84)(43,85)(44,86), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88), (1,44)(2,43)(3,42)(4,41)(5,40)(6,39)(7,38)(8,37)(9,36)(10,35)(11,34)(12,33)(13,32)(14,31)(15,30)(16,29)(17,28)(18,27)(19,26)(20,25)(21,24)(22,23)(45,84)(46,83)(47,82)(48,81)(49,80)(50,79)(51,78)(52,77)(53,76)(54,75)(55,74)(56,73)(57,72)(58,71)(59,70)(60,69)(61,68)(62,67)(63,66)(64,65)(85,88)(86,87) );

G=PermutationGroup([[(1,87),(2,88),(3,45),(4,46),(5,47),(6,48),(7,49),(8,50),(9,51),(10,52),(11,53),(12,54),(13,55),(14,56),(15,57),(16,58),(17,59),(18,60),(19,61),(20,62),(21,63),(22,64),(23,65),(24,66),(25,67),(26,68),(27,69),(28,70),(29,71),(30,72),(31,73),(32,74),(33,75),(34,76),(35,77),(36,78),(37,79),(38,80),(39,81),(40,82),(41,83),(42,84),(43,85),(44,86)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)], [(1,44),(2,43),(3,42),(4,41),(5,40),(6,39),(7,38),(8,37),(9,36),(10,35),(11,34),(12,33),(13,32),(14,31),(15,30),(16,29),(17,28),(18,27),(19,26),(20,25),(21,24),(22,23),(45,84),(46,83),(47,82),(48,81),(49,80),(50,79),(51,78),(52,77),(53,76),(54,75),(55,74),(56,73),(57,72),(58,71),(59,70),(60,69),(61,68),(62,67),(63,66),(64,65),(85,88),(86,87)]])

C2×D44 is a maximal subgroup of
C22.D8  C2.D88  C44.46D4  C4⋊D44  C4.D44  C22⋊D44  D22⋊D4  D44⋊C4  D22.5D4  C42D44  C8⋊D22  C447D4  C44⋊D4  C44.23D4  Q8⋊D22  C2×D4×D11  D48D22
C2×D44 is a maximal quotient of
C442Q8  C4⋊D44  C4.D44  C22⋊D44  C22.D44  C42D44  D222Q8  D887C2  C8⋊D22  C8.D22  C447D4

50 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B11A···11E22A···22O44A···44T
order122222224411···1122···2244···44
size111122222222222···22···22···2

50 irreducible representations

dim111122222
type+++++++++
imageC1C2C2C2D4D11D22D22D44
kernelC2×D44D44C2×C44C22×D11C22C2×C4C4C22C2
# reps14122510520

Matrix representation of C2×D44 in GL4(𝔽89) generated by

88000
08800
00880
00088
,
441700
724200
005254
006088
,
441700
384500
00874
002281
G:=sub<GL(4,GF(89))| [88,0,0,0,0,88,0,0,0,0,88,0,0,0,0,88],[44,72,0,0,17,42,0,0,0,0,52,60,0,0,54,88],[44,38,0,0,17,45,0,0,0,0,8,22,0,0,74,81] >;

C2×D44 in GAP, Magma, Sage, TeX

C_2\times D_{44}
% in TeX

G:=Group("C2xD44");
// GroupNames label

G:=SmallGroup(176,29);
// by ID

G=gap.SmallGroup(176,29);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-11,182,42,4004]);
// Polycyclic

G:=Group<a,b,c|a^2=b^44=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽