Copied to
clipboard

G = C8⋊D22order 352 = 25·11

1st semidirect product of C8 and D22 acting via D22/C11=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C81D22, D882C2, C881C22, C4.14D44, C44.12D4, D444C22, C22.5D44, M4(2)⋊1D11, C44.32C23, Dic224C22, (C2×D44)⋊7C2, C8⋊D111C2, (C2×C22).5D4, C111(C8⋊C22), C22.13(C2×D4), C2.15(C2×D44), (C2×C4).15D22, D445C22C2, (C11×M4(2))⋊1C2, (C2×C44).27C22, C4.30(C22×D11), SmallGroup(352,103)

Series: Derived Chief Lower central Upper central

C1C44 — C8⋊D22
C1C11C22C44D44C2×D44 — C8⋊D22
C11C22C44 — C8⋊D22
C1C2C2×C4M4(2)

Generators and relations for C8⋊D22
 G = < a,b,c | a8=b22=c2=1, bab-1=a5, cac=a-1, cbc=b-1 >

Subgroups: 586 in 68 conjugacy classes, 29 normal (19 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C11, M4(2), D8, SD16, C2×D4, C4○D4, D11, C22, C22, C8⋊C22, Dic11, C44, D22, C2×C22, C88, Dic22, C4×D11, D44, D44, D44, C11⋊D4, C2×C44, C22×D11, C8⋊D11, D88, C11×M4(2), C2×D44, D445C2, C8⋊D22
Quotients: C1, C2, C22, D4, C23, C2×D4, D11, C8⋊C22, D22, D44, C22×D11, C2×D44, C8⋊D22

Smallest permutation representation of C8⋊D22
On 88 points
Generators in S88
(1 77 21 64 28 88 44 53)(2 67 22 54 29 78 34 65)(3 79 12 66 30 68 35 55)(4 69 13 56 31 80 36 45)(5 81 14 46 32 70 37 57)(6 71 15 58 33 82 38 47)(7 83 16 48 23 72 39 59)(8 73 17 60 24 84 40 49)(9 85 18 50 25 74 41 61)(10 75 19 62 26 86 42 51)(11 87 20 52 27 76 43 63)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)
(1 14)(2 13)(3 12)(4 22)(5 21)(6 20)(7 19)(8 18)(9 17)(10 16)(11 15)(23 42)(24 41)(25 40)(26 39)(27 38)(28 37)(29 36)(30 35)(31 34)(32 44)(33 43)(45 54)(46 53)(47 52)(48 51)(49 50)(55 66)(56 65)(57 64)(58 63)(59 62)(60 61)(67 69)(70 88)(71 87)(72 86)(73 85)(74 84)(75 83)(76 82)(77 81)(78 80)

G:=sub<Sym(88)| (1,77,21,64,28,88,44,53)(2,67,22,54,29,78,34,65)(3,79,12,66,30,68,35,55)(4,69,13,56,31,80,36,45)(5,81,14,46,32,70,37,57)(6,71,15,58,33,82,38,47)(7,83,16,48,23,72,39,59)(8,73,17,60,24,84,40,49)(9,85,18,50,25,74,41,61)(10,75,19,62,26,86,42,51)(11,87,20,52,27,76,43,63), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88), (1,14)(2,13)(3,12)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(23,42)(24,41)(25,40)(26,39)(27,38)(28,37)(29,36)(30,35)(31,34)(32,44)(33,43)(45,54)(46,53)(47,52)(48,51)(49,50)(55,66)(56,65)(57,64)(58,63)(59,62)(60,61)(67,69)(70,88)(71,87)(72,86)(73,85)(74,84)(75,83)(76,82)(77,81)(78,80)>;

G:=Group( (1,77,21,64,28,88,44,53)(2,67,22,54,29,78,34,65)(3,79,12,66,30,68,35,55)(4,69,13,56,31,80,36,45)(5,81,14,46,32,70,37,57)(6,71,15,58,33,82,38,47)(7,83,16,48,23,72,39,59)(8,73,17,60,24,84,40,49)(9,85,18,50,25,74,41,61)(10,75,19,62,26,86,42,51)(11,87,20,52,27,76,43,63), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88), (1,14)(2,13)(3,12)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(23,42)(24,41)(25,40)(26,39)(27,38)(28,37)(29,36)(30,35)(31,34)(32,44)(33,43)(45,54)(46,53)(47,52)(48,51)(49,50)(55,66)(56,65)(57,64)(58,63)(59,62)(60,61)(67,69)(70,88)(71,87)(72,86)(73,85)(74,84)(75,83)(76,82)(77,81)(78,80) );

G=PermutationGroup([[(1,77,21,64,28,88,44,53),(2,67,22,54,29,78,34,65),(3,79,12,66,30,68,35,55),(4,69,13,56,31,80,36,45),(5,81,14,46,32,70,37,57),(6,71,15,58,33,82,38,47),(7,83,16,48,23,72,39,59),(8,73,17,60,24,84,40,49),(9,85,18,50,25,74,41,61),(10,75,19,62,26,86,42,51),(11,87,20,52,27,76,43,63)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)], [(1,14),(2,13),(3,12),(4,22),(5,21),(6,20),(7,19),(8,18),(9,17),(10,16),(11,15),(23,42),(24,41),(25,40),(26,39),(27,38),(28,37),(29,36),(30,35),(31,34),(32,44),(33,43),(45,54),(46,53),(47,52),(48,51),(49,50),(55,66),(56,65),(57,64),(58,63),(59,62),(60,61),(67,69),(70,88),(71,87),(72,86),(73,85),(74,84),(75,83),(76,82),(77,81),(78,80)]])

61 conjugacy classes

class 1 2A2B2C2D2E4A4B4C8A8B11A···11E22A···22E22F···22J44A···44J44K···44O88A···88T
order1222224448811···1122···2222···2244···4444···4488···88
size1124444442244442···22···24···42···24···44···4

61 irreducible representations

dim111111222222244
type+++++++++++++++
imageC1C2C2C2C2C2D4D4D11D22D22D44D44C8⋊C22C8⋊D22
kernelC8⋊D22C8⋊D11D88C11×M4(2)C2×D44D445C2C44C2×C22M4(2)C8C2×C4C4C22C11C1
# reps1221111151051010110

Matrix representation of C8⋊D22 in GL6(𝔽89)

17300000
20720000
00730790
00260481
00661160
00150260
,
54530000
65770000
0088000
0008800
0021010
0023001
,
73110000
82160000
0088000
0063100
0022001
0022010

G:=sub<GL(6,GF(89))| [17,20,0,0,0,0,30,72,0,0,0,0,0,0,73,26,66,15,0,0,0,0,1,0,0,0,79,48,16,26,0,0,0,1,0,0],[54,65,0,0,0,0,53,77,0,0,0,0,0,0,88,0,21,23,0,0,0,88,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[73,82,0,0,0,0,11,16,0,0,0,0,0,0,88,63,22,22,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

C8⋊D22 in GAP, Magma, Sage, TeX

C_8\rtimes D_{22}
% in TeX

G:=Group("C8:D22");
// GroupNames label

G:=SmallGroup(352,103);
// by ID

G=gap.SmallGroup(352,103);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-11,218,188,50,579,69,11525]);
// Polycyclic

G:=Group<a,b,c|a^8=b^22=c^2=1,b*a*b^-1=a^5,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽