Extensions 1→N→G→Q→1 with N=C4 and Q=C2×Dic11

Direct product G=N×Q with N=C4 and Q=C2×Dic11
dρLabelID
C2×C4×Dic11352C2xC4xDic11352,117

Semidirect products G=N:Q with N=C4 and Q=C2×Dic11
extensionφ:Q→Aut NdρLabelID
C41(C2×Dic11) = D4×Dic11φ: C2×Dic11/Dic11C2 ⊆ Aut C4176C4:1(C2xDic11)352,129
C42(C2×Dic11) = C2×C44⋊C4φ: C2×Dic11/C2×C22C2 ⊆ Aut C4352C4:2(C2xDic11)352,120

Non-split extensions G=N.Q with N=C4 and Q=C2×Dic11
extensionφ:Q→Aut NdρLabelID
C4.1(C2×Dic11) = D4⋊Dic11φ: C2×Dic11/Dic11C2 ⊆ Aut C4176C4.1(C2xDic11)352,38
C4.2(C2×Dic11) = Q8⋊Dic11φ: C2×Dic11/Dic11C2 ⊆ Aut C4352C4.2(C2xDic11)352,41
C4.3(C2×Dic11) = C44.56D4φ: C2×Dic11/Dic11C2 ⊆ Aut C4884C4.3(C2xDic11)352,43
C4.4(C2×Dic11) = Q8×Dic11φ: C2×Dic11/Dic11C2 ⊆ Aut C4352C4.4(C2xDic11)352,140
C4.5(C2×Dic11) = Q8.Dic11φ: C2×Dic11/Dic11C2 ⊆ Aut C41764C4.5(C2xDic11)352,143
C4.6(C2×Dic11) = C44.4Q8φ: C2×Dic11/C2×C22C2 ⊆ Aut C4352C4.6(C2xDic11)352,23
C4.7(C2×Dic11) = C44.5Q8φ: C2×Dic11/C2×C22C2 ⊆ Aut C4352C4.7(C2xDic11)352,24
C4.8(C2×Dic11) = C88.C4φ: C2×Dic11/C2×C22C2 ⊆ Aut C41762C4.8(C2xDic11)352,25
C4.9(C2×Dic11) = C2×C44.C4φ: C2×Dic11/C2×C22C2 ⊆ Aut C4176C4.9(C2xDic11)352,116
C4.10(C2×Dic11) = C2×C11⋊C16central extension (φ=1)352C4.10(C2xDic11)352,17
C4.11(C2×Dic11) = C44.C8central extension (φ=1)1762C4.11(C2xDic11)352,18
C4.12(C2×Dic11) = C8×Dic11central extension (φ=1)352C4.12(C2xDic11)352,19
C4.13(C2×Dic11) = C88⋊C4central extension (φ=1)352C4.13(C2xDic11)352,21
C4.14(C2×Dic11) = C22×C11⋊C8central extension (φ=1)352C4.14(C2xDic11)352,115
C4.15(C2×Dic11) = C23.21D22central extension (φ=1)176C4.15(C2xDic11)352,121

׿
×
𝔽