metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: Dic11, C11⋊C4, C22.C2, C2.D11, SmallGroup(44,1)
Series: Derived ►Chief ►Lower central ►Upper central
C11 — Dic11 |
Generators and relations for Dic11
G = < a,b | a22=1, b2=a11, bab-1=a-1 >
Character table of Dic11
class | 1 | 2 | 4A | 4B | 11A | 11B | 11C | 11D | 11E | 22A | 22B | 22C | 22D | 22E | |
size | 1 | 1 | 11 | 11 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | -i | i | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ4 | 1 | -1 | i | -i | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ5 | 2 | 2 | 0 | 0 | ζ116+ζ115 | ζ119+ζ112 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | ζ117+ζ114 | ζ118+ζ113 | orthogonal lifted from D11 |
ρ6 | 2 | 2 | 0 | 0 | ζ117+ζ114 | ζ116+ζ115 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | ζ1110+ζ11 | ζ119+ζ112 | orthogonal lifted from D11 |
ρ7 | 2 | 2 | 0 | 0 | ζ118+ζ113 | ζ1110+ζ11 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | ζ119+ζ112 | ζ117+ζ114 | orthogonal lifted from D11 |
ρ8 | 2 | 2 | 0 | 0 | ζ119+ζ112 | ζ118+ζ113 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | ζ116+ζ115 | ζ1110+ζ11 | orthogonal lifted from D11 |
ρ9 | 2 | 2 | 0 | 0 | ζ1110+ζ11 | ζ117+ζ114 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | ζ118+ζ113 | ζ116+ζ115 | orthogonal lifted from D11 |
ρ10 | 2 | -2 | 0 | 0 | ζ119+ζ112 | ζ118+ζ113 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | -ζ117-ζ114 | -ζ119-ζ112 | -ζ118-ζ113 | -ζ116-ζ115 | -ζ1110-ζ11 | symplectic faithful, Schur index 2 |
ρ11 | 2 | -2 | 0 | 0 | ζ116+ζ115 | ζ119+ζ112 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | -ζ1110-ζ11 | -ζ116-ζ115 | -ζ119-ζ112 | -ζ117-ζ114 | -ζ118-ζ113 | symplectic faithful, Schur index 2 |
ρ12 | 2 | -2 | 0 | 0 | ζ1110+ζ11 | ζ117+ζ114 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | -ζ119-ζ112 | -ζ1110-ζ11 | -ζ117-ζ114 | -ζ118-ζ113 | -ζ116-ζ115 | symplectic faithful, Schur index 2 |
ρ13 | 2 | -2 | 0 | 0 | ζ117+ζ114 | ζ116+ζ115 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | -ζ118-ζ113 | -ζ117-ζ114 | -ζ116-ζ115 | -ζ1110-ζ11 | -ζ119-ζ112 | symplectic faithful, Schur index 2 |
ρ14 | 2 | -2 | 0 | 0 | ζ118+ζ113 | ζ1110+ζ11 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | -ζ116-ζ115 | -ζ118-ζ113 | -ζ1110-ζ11 | -ζ119-ζ112 | -ζ117-ζ114 | symplectic faithful, Schur index 2 |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44)
(1 24 12 35)(2 23 13 34)(3 44 14 33)(4 43 15 32)(5 42 16 31)(6 41 17 30)(7 40 18 29)(8 39 19 28)(9 38 20 27)(10 37 21 26)(11 36 22 25)
G:=sub<Sym(44)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44), (1,24,12,35)(2,23,13,34)(3,44,14,33)(4,43,15,32)(5,42,16,31)(6,41,17,30)(7,40,18,29)(8,39,19,28)(9,38,20,27)(10,37,21,26)(11,36,22,25)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44), (1,24,12,35)(2,23,13,34)(3,44,14,33)(4,43,15,32)(5,42,16,31)(6,41,17,30)(7,40,18,29)(8,39,19,28)(9,38,20,27)(10,37,21,26)(11,36,22,25) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)], [(1,24,12,35),(2,23,13,34),(3,44,14,33),(4,43,15,32),(5,42,16,31),(6,41,17,30),(7,40,18,29),(8,39,19,28),(9,38,20,27),(10,37,21,26),(11,36,22,25)]])
Dic11 is a maximal subgroup of
C4×D11 C11⋊D4 C11⋊C20 C11⋊F5 C32⋊Dic11 C11⋊Dic11
Dic11p: Dic22 Dic33 Dic55 Dic77 Dic121 ...
Dic11 is a maximal quotient of
C11⋊F5 C32⋊Dic11
C2p.D11: C11⋊C8 Dic33 Dic55 Dic77 Dic121 C11⋊Dic11 ...
Matrix representation of Dic11 ►in GL2(𝔽23) generated by
22 | 5 |
5 | 20 |
0 | 22 |
1 | 0 |
G:=sub<GL(2,GF(23))| [22,5,5,20],[0,1,22,0] >;
Dic11 in GAP, Magma, Sage, TeX
{\rm Dic}_{11}
% in TeX
G:=Group("Dic11");
// GroupNames label
G:=SmallGroup(44,1);
// by ID
G=gap.SmallGroup(44,1);
# by ID
G:=PCGroup([3,-2,-2,-11,6,362]);
// Polycyclic
G:=Group<a,b|a^22=1,b^2=a^11,b*a*b^-1=a^-1>;
// generators/relations
Export
Subgroup lattice of Dic11 in TeX
Character table of Dic11 in TeX