Extensions 1→N→G→Q→1 with N=C6×D5 and Q=S3

Direct product G=N×Q with N=C6×D5 and Q=S3
dρLabelID
S3×C6×D5604S3xC6xD5360,151

Semidirect products G=N:Q with N=C6×D5 and Q=S3
extensionφ:Q→Out NdρLabelID
(C6×D5)⋊1S3 = C30.12D6φ: S3/C3C2 ⊆ Out C6×D5180(C6xD5):1S3360,68
(C6×D5)⋊2S3 = C327D20φ: S3/C3C2 ⊆ Out C6×D5180(C6xD5):2S3360,69
(C6×D5)⋊3S3 = C2×D5×C3⋊S3φ: S3/C3C2 ⊆ Out C6×D590(C6xD5):3S3360,152
(C6×D5)⋊4S3 = C3×C15⋊D4φ: S3/C3C2 ⊆ Out C6×D5604(C6xD5):4S3360,61
(C6×D5)⋊5S3 = C3×C3⋊D20φ: S3/C3C2 ⊆ Out C6×D5604(C6xD5):5S3360,62

Non-split extensions G=N.Q with N=C6×D5 and Q=S3
extensionφ:Q→Out NdρLabelID
(C6×D5).1S3 = D5×Dic9φ: S3/C3C2 ⊆ Out C6×D51804-(C6xD5).1S3360,11
(C6×D5).2S3 = C45⋊D4φ: S3/C3C2 ⊆ Out C6×D51804-(C6xD5).2S3360,12
(C6×D5).3S3 = C9⋊D20φ: S3/C3C2 ⊆ Out C6×D51804+(C6xD5).3S3360,13
(C6×D5).4S3 = C2×D5×D9φ: S3/C3C2 ⊆ Out C6×D5904+(C6xD5).4S3360,45
(C6×D5).5S3 = D5×C3⋊Dic3φ: S3/C3C2 ⊆ Out C6×D5180(C6xD5).5S3360,65
(C6×D5).6S3 = C2×C9⋊F5φ: S3/C3C2 ⊆ Out C6×D5904(C6xD5).6S3360,44
(C6×D5).7S3 = C2×C323F5φ: S3/C3C2 ⊆ Out C6×D590(C6xD5).7S3360,147
(C6×D5).8S3 = C6×C3⋊F5φ: S3/C3C2 ⊆ Out C6×D5604(C6xD5).8S3360,146
(C6×D5).9S3 = C3×D5×Dic3φ: trivial image604(C6xD5).9S3360,58

׿
×
𝔽