Extensions 1→N→G→Q→1 with N=C2×C3⋊S3 and Q=D5

Direct product G=N×Q with N=C2×C3⋊S3 and Q=D5
dρLabelID
C2×D5×C3⋊S390C2xD5xC3:S3360,152

Semidirect products G=N:Q with N=C2×C3⋊S3 and Q=D5
extensionφ:Q→Out NdρLabelID
(C2×C3⋊S3)⋊1D5 = C30.12D6φ: D5/C5C2 ⊆ Out C2×C3⋊S3180(C2xC3:S3):1D5360,68
(C2×C3⋊S3)⋊2D5 = C15⋊D12φ: D5/C5C2 ⊆ Out C2×C3⋊S3180(C2xC3:S3):2D5360,70
(C2×C3⋊S3)⋊3D5 = D30⋊S3φ: D5/C5C2 ⊆ Out C2×C3⋊S3604(C2xC3:S3):3D5360,86
(C2×C3⋊S3)⋊4D5 = C2×D15⋊S3φ: D5/C5C2 ⊆ Out C2×C3⋊S3604(C2xC3:S3):4D5360,155

Non-split extensions G=N.Q with N=C2×C3⋊S3 and Q=D5
extensionφ:Q→Out NdρLabelID
(C2×C3⋊S3).1D5 = Dic15⋊S3φ: D5/C5C2 ⊆ Out C2×C3⋊S3604(C2xC3:S3).1D5360,85
(C2×C3⋊S3).2D5 = C2×C32⋊Dic5φ: D5/C5C2 ⊆ Out C2×C3⋊S3604(C2xC3:S3).2D5360,149
(C2×C3⋊S3).3D5 = C3⋊S3×Dic5φ: trivial image180(C2xC3:S3).3D5360,66

׿
×
𝔽