Extensions 1→N→G→Q→1 with N=C5xDic3 and Q=S3

Direct product G=NxQ with N=C5xDic3 and Q=S3
dρLabelID
C5xS3xDic31204C5xS3xDic3360,72

Semidirect products G=N:Q with N=C5xDic3 and Q=S3
extensionφ:Q→Out NdρLabelID
(C5xDic3):1S3 = Dic3xD15φ: S3/C3C2 ⊆ Out C5xDic31204-(C5xDic3):1S3360,77
(C5xDic3):2S3 = C6.D30φ: S3/C3C2 ⊆ Out C5xDic3604+(C5xDic3):2S3360,79
(C5xDic3):3S3 = C3:D60φ: S3/C3C2 ⊆ Out C5xDic3604+(C5xDic3):3S3360,81
(C5xDic3):4S3 = C5xC3:D12φ: S3/C3C2 ⊆ Out C5xDic3604(C5xDic3):4S3360,75
(C5xDic3):5S3 = C5xC6.D6φ: trivial image604(C5xDic3):5S3360,73

Non-split extensions G=N.Q with N=C5xDic3 and Q=S3
extensionφ:Q→Out NdρLabelID
(C5xDic3).1S3 = C3:Dic30φ: S3/C3C2 ⊆ Out C5xDic31204-(C5xDic3).1S3360,83
(C5xDic3).2S3 = C5xC32:2Q8φ: S3/C3C2 ⊆ Out C5xDic31204(C5xDic3).2S3360,76

׿
x
:
Z
F
o
wr
Q
<