Copied to
clipboard

G = Dic3×D15order 360 = 23·32·5

Direct product of Dic3 and D15

direct product, metabelian, supersoluble, monomial, A-group

Aliases: Dic3×D15, C6.1D30, D30.2S3, C30.16D6, C10.1S32, C157(C4×S3), C33(C4×D15), C6.1(S3×D5), C52(S3×Dic3), C322(C4×D5), (C3×D15)⋊4C4, C31(D5×Dic3), (C3×C6).1D10, C2.1(S3×D15), C3⋊Dic155C2, (C5×Dic3)⋊1S3, (C3×Dic3)⋊2D5, (C6×D15).2C2, C157(C2×Dic3), (Dic3×C15)⋊2C2, (C3×C30).15C22, (C3×C15)⋊19(C2×C4), SmallGroup(360,77)

Series: Derived Chief Lower central Upper central

C1C3×C15 — Dic3×D15
C1C5C15C3×C15C3×C30C6×D15 — Dic3×D15
C3×C15 — Dic3×D15
C1C2

Generators and relations for Dic3×D15
 G = < a,b,c,d | a6=c15=d2=1, b2=a3, bab-1=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 412 in 70 conjugacy classes, 28 normal (24 characteristic)
C1, C2, C2, C3, C3, C4, C22, C5, S3, C6, C6, C2×C4, C32, D5, C10, Dic3, Dic3, C12, D6, C2×C6, C15, C15, C3×S3, C3×C6, Dic5, C20, D10, C4×S3, C2×Dic3, C3×D5, D15, C30, C30, C3×Dic3, C3⋊Dic3, S3×C6, C4×D5, C3×C15, C5×Dic3, Dic15, C60, C6×D5, D30, S3×Dic3, C3×D15, C3×C30, D5×Dic3, C4×D15, Dic3×C15, C3⋊Dic15, C6×D15, Dic3×D15
Quotients: C1, C2, C4, C22, S3, C2×C4, D5, Dic3, D6, D10, C4×S3, C2×Dic3, D15, S32, C4×D5, S3×D5, D30, S3×Dic3, D5×Dic3, C4×D15, S3×D15, Dic3×D15

Smallest permutation representation of Dic3×D15
On 120 points
Generators in S120
(1 25 11 20 6 30)(2 26 12 21 7 16)(3 27 13 22 8 17)(4 28 14 23 9 18)(5 29 15 24 10 19)(31 55 36 60 41 50)(32 56 37 46 42 51)(33 57 38 47 43 52)(34 58 39 48 44 53)(35 59 40 49 45 54)(61 79 66 84 71 89)(62 80 67 85 72 90)(63 81 68 86 73 76)(64 82 69 87 74 77)(65 83 70 88 75 78)(91 117 101 112 96 107)(92 118 102 113 97 108)(93 119 103 114 98 109)(94 120 104 115 99 110)(95 106 105 116 100 111)
(1 46 20 32)(2 47 21 33)(3 48 22 34)(4 49 23 35)(5 50 24 36)(6 51 25 37)(7 52 26 38)(8 53 27 39)(9 54 28 40)(10 55 29 41)(11 56 30 42)(12 57 16 43)(13 58 17 44)(14 59 18 45)(15 60 19 31)(61 116 84 95)(62 117 85 96)(63 118 86 97)(64 119 87 98)(65 120 88 99)(66 106 89 100)(67 107 90 101)(68 108 76 102)(69 109 77 103)(70 110 78 104)(71 111 79 105)(72 112 80 91)(73 113 81 92)(74 114 82 93)(75 115 83 94)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 68)(2 67)(3 66)(4 65)(5 64)(6 63)(7 62)(8 61)(9 75)(10 74)(11 73)(12 72)(13 71)(14 70)(15 69)(16 80)(17 79)(18 78)(19 77)(20 76)(21 90)(22 89)(23 88)(24 87)(25 86)(26 85)(27 84)(28 83)(29 82)(30 81)(31 103)(32 102)(33 101)(34 100)(35 99)(36 98)(37 97)(38 96)(39 95)(40 94)(41 93)(42 92)(43 91)(44 105)(45 104)(46 108)(47 107)(48 106)(49 120)(50 119)(51 118)(52 117)(53 116)(54 115)(55 114)(56 113)(57 112)(58 111)(59 110)(60 109)

G:=sub<Sym(120)| (1,25,11,20,6,30)(2,26,12,21,7,16)(3,27,13,22,8,17)(4,28,14,23,9,18)(5,29,15,24,10,19)(31,55,36,60,41,50)(32,56,37,46,42,51)(33,57,38,47,43,52)(34,58,39,48,44,53)(35,59,40,49,45,54)(61,79,66,84,71,89)(62,80,67,85,72,90)(63,81,68,86,73,76)(64,82,69,87,74,77)(65,83,70,88,75,78)(91,117,101,112,96,107)(92,118,102,113,97,108)(93,119,103,114,98,109)(94,120,104,115,99,110)(95,106,105,116,100,111), (1,46,20,32)(2,47,21,33)(3,48,22,34)(4,49,23,35)(5,50,24,36)(6,51,25,37)(7,52,26,38)(8,53,27,39)(9,54,28,40)(10,55,29,41)(11,56,30,42)(12,57,16,43)(13,58,17,44)(14,59,18,45)(15,60,19,31)(61,116,84,95)(62,117,85,96)(63,118,86,97)(64,119,87,98)(65,120,88,99)(66,106,89,100)(67,107,90,101)(68,108,76,102)(69,109,77,103)(70,110,78,104)(71,111,79,105)(72,112,80,91)(73,113,81,92)(74,114,82,93)(75,115,83,94), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,68)(2,67)(3,66)(4,65)(5,64)(6,63)(7,62)(8,61)(9,75)(10,74)(11,73)(12,72)(13,71)(14,70)(15,69)(16,80)(17,79)(18,78)(19,77)(20,76)(21,90)(22,89)(23,88)(24,87)(25,86)(26,85)(27,84)(28,83)(29,82)(30,81)(31,103)(32,102)(33,101)(34,100)(35,99)(36,98)(37,97)(38,96)(39,95)(40,94)(41,93)(42,92)(43,91)(44,105)(45,104)(46,108)(47,107)(48,106)(49,120)(50,119)(51,118)(52,117)(53,116)(54,115)(55,114)(56,113)(57,112)(58,111)(59,110)(60,109)>;

G:=Group( (1,25,11,20,6,30)(2,26,12,21,7,16)(3,27,13,22,8,17)(4,28,14,23,9,18)(5,29,15,24,10,19)(31,55,36,60,41,50)(32,56,37,46,42,51)(33,57,38,47,43,52)(34,58,39,48,44,53)(35,59,40,49,45,54)(61,79,66,84,71,89)(62,80,67,85,72,90)(63,81,68,86,73,76)(64,82,69,87,74,77)(65,83,70,88,75,78)(91,117,101,112,96,107)(92,118,102,113,97,108)(93,119,103,114,98,109)(94,120,104,115,99,110)(95,106,105,116,100,111), (1,46,20,32)(2,47,21,33)(3,48,22,34)(4,49,23,35)(5,50,24,36)(6,51,25,37)(7,52,26,38)(8,53,27,39)(9,54,28,40)(10,55,29,41)(11,56,30,42)(12,57,16,43)(13,58,17,44)(14,59,18,45)(15,60,19,31)(61,116,84,95)(62,117,85,96)(63,118,86,97)(64,119,87,98)(65,120,88,99)(66,106,89,100)(67,107,90,101)(68,108,76,102)(69,109,77,103)(70,110,78,104)(71,111,79,105)(72,112,80,91)(73,113,81,92)(74,114,82,93)(75,115,83,94), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,68)(2,67)(3,66)(4,65)(5,64)(6,63)(7,62)(8,61)(9,75)(10,74)(11,73)(12,72)(13,71)(14,70)(15,69)(16,80)(17,79)(18,78)(19,77)(20,76)(21,90)(22,89)(23,88)(24,87)(25,86)(26,85)(27,84)(28,83)(29,82)(30,81)(31,103)(32,102)(33,101)(34,100)(35,99)(36,98)(37,97)(38,96)(39,95)(40,94)(41,93)(42,92)(43,91)(44,105)(45,104)(46,108)(47,107)(48,106)(49,120)(50,119)(51,118)(52,117)(53,116)(54,115)(55,114)(56,113)(57,112)(58,111)(59,110)(60,109) );

G=PermutationGroup([[(1,25,11,20,6,30),(2,26,12,21,7,16),(3,27,13,22,8,17),(4,28,14,23,9,18),(5,29,15,24,10,19),(31,55,36,60,41,50),(32,56,37,46,42,51),(33,57,38,47,43,52),(34,58,39,48,44,53),(35,59,40,49,45,54),(61,79,66,84,71,89),(62,80,67,85,72,90),(63,81,68,86,73,76),(64,82,69,87,74,77),(65,83,70,88,75,78),(91,117,101,112,96,107),(92,118,102,113,97,108),(93,119,103,114,98,109),(94,120,104,115,99,110),(95,106,105,116,100,111)], [(1,46,20,32),(2,47,21,33),(3,48,22,34),(4,49,23,35),(5,50,24,36),(6,51,25,37),(7,52,26,38),(8,53,27,39),(9,54,28,40),(10,55,29,41),(11,56,30,42),(12,57,16,43),(13,58,17,44),(14,59,18,45),(15,60,19,31),(61,116,84,95),(62,117,85,96),(63,118,86,97),(64,119,87,98),(65,120,88,99),(66,106,89,100),(67,107,90,101),(68,108,76,102),(69,109,77,103),(70,110,78,104),(71,111,79,105),(72,112,80,91),(73,113,81,92),(74,114,82,93),(75,115,83,94)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,68),(2,67),(3,66),(4,65),(5,64),(6,63),(7,62),(8,61),(9,75),(10,74),(11,73),(12,72),(13,71),(14,70),(15,69),(16,80),(17,79),(18,78),(19,77),(20,76),(21,90),(22,89),(23,88),(24,87),(25,86),(26,85),(27,84),(28,83),(29,82),(30,81),(31,103),(32,102),(33,101),(34,100),(35,99),(36,98),(37,97),(38,96),(39,95),(40,94),(41,93),(42,92),(43,91),(44,105),(45,104),(46,108),(47,107),(48,106),(49,120),(50,119),(51,118),(52,117),(53,116),(54,115),(55,114),(56,113),(57,112),(58,111),(59,110),(60,109)]])

54 conjugacy classes

class 1 2A2B2C3A3B3C4A4B4C4D5A5B6A6B6C6D6E10A10B12A12B15A15B15C15D15E···15J20A20B20C20D30A30B30C30D30E···30J60A···60H
order122233344445566666101012121515151515···15202020203030303030···3060···60
size111515224334545222243030226622224···4666622224···46···6

54 irreducible representations

dim1111122222222222444444
type+++++++-++++++--+-
imageC1C2C2C2C4S3S3D5Dic3D6D10C4×S3D15C4×D5D30C4×D15S32S3×D5S3×Dic3D5×Dic3S3×D15Dic3×D15
kernelDic3×D15Dic3×C15C3⋊Dic15C6×D15C3×D15C5×Dic3D30C3×Dic3D15C30C3×C6C15Dic3C32C6C3C10C6C5C3C2C1
# reps1111411222224448121244

Matrix representation of Dic3×D15 in GL6(𝔽61)

6000000
0600000
001000
000100
0000060
0000160
,
1100000
0110000
0060000
0006000
000001
000010
,
44170000
44600000
00606000
001000
000010
000001
,
60440000
010000
00606000
000100
000010
000001

G:=sub<GL(6,GF(61))| [60,0,0,0,0,0,0,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,60,60],[11,0,0,0,0,0,0,11,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[44,44,0,0,0,0,17,60,0,0,0,0,0,0,60,1,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[60,0,0,0,0,0,44,1,0,0,0,0,0,0,60,0,0,0,0,0,60,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

Dic3×D15 in GAP, Magma, Sage, TeX

{\rm Dic}_3\times D_{15}
% in TeX

G:=Group("Dic3xD15");
// GroupNames label

G:=SmallGroup(360,77);
// by ID

G=gap.SmallGroup(360,77);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-3,-5,31,201,1444,10373]);
// Polycyclic

G:=Group<a,b,c,d|a^6=c^15=d^2=1,b^2=a^3,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽