Extensions 1→N→G→Q→1 with N=C46 and Q=D4

Direct product G=N×Q with N=C46 and Q=D4
dρLabelID
D4×C46184D4xC46368,38

Semidirect products G=N:Q with N=C46 and Q=D4
extensionφ:Q→Aut NdρLabelID
C461D4 = C2×D92φ: D4/C4C2 ⊆ Aut C46184C46:1D4368,29
C462D4 = C2×C23⋊D4φ: D4/C22C2 ⊆ Aut C46184C46:2D4368,36

Non-split extensions G=N.Q with N=C46 and Q=D4
extensionφ:Q→Aut NdρLabelID
C46.1D4 = C184⋊C2φ: D4/C4C2 ⊆ Aut C461842C46.1D4368,5
C46.2D4 = D184φ: D4/C4C2 ⊆ Aut C461842+C46.2D4368,6
C46.3D4 = Dic92φ: D4/C4C2 ⊆ Aut C463682-C46.3D4368,7
C46.4D4 = C92⋊C4φ: D4/C4C2 ⊆ Aut C46368C46.4D4368,12
C46.5D4 = Dic23⋊C4φ: D4/C22C2 ⊆ Aut C46368C46.5D4368,11
C46.6D4 = D46⋊C4φ: D4/C22C2 ⊆ Aut C46184C46.6D4368,13
C46.7D4 = D4⋊D23φ: D4/C22C2 ⊆ Aut C461844+C46.7D4368,14
C46.8D4 = D4.D23φ: D4/C22C2 ⊆ Aut C461844-C46.8D4368,15
C46.9D4 = Q8⋊D23φ: D4/C22C2 ⊆ Aut C461844+C46.9D4368,16
C46.10D4 = C23⋊Q16φ: D4/C22C2 ⊆ Aut C463684-C46.10D4368,17
C46.11D4 = C23.D23φ: D4/C22C2 ⊆ Aut C46184C46.11D4368,18
C46.12D4 = C22⋊C4×C23central extension (φ=1)184C46.12D4368,20
C46.13D4 = C4⋊C4×C23central extension (φ=1)368C46.13D4368,21
C46.14D4 = D8×C23central extension (φ=1)1842C46.14D4368,24
C46.15D4 = SD16×C23central extension (φ=1)1842C46.15D4368,25
C46.16D4 = Q16×C23central extension (φ=1)3682C46.16D4368,26

׿
×
𝔽